

THE ACCULINNA AND ACCULINNA-2 RADIOACTIVE ION BEAM FACILITY AT DUBNA: STATUS AND PERSPECTIVES

Grzegorz Kamiński for the ACCULINNA group FLNR, JINR, DUBNA

International Nuclear Physics Conference (INPC2016) Adelaide Convention Centre, Australia September 11-16, 2016

Short outline

- Introduction: Light RIB facility at FLNR: ACCULINNA
- Status of the ACCULINNA-2 project
- Experiments @ACCULINNA& first day experiments at ACCULINNA-2

Grzegorz Kaminski, INPC2016, Adelaide

Superheavy and "superlight" research at FLNR, JINR

Superheavy and "superlight" research at FLNR, JINR

Characteristics of existing and new in-flight RIB separators (ΔΩ and Δp/p are angular and momentum acceptances, Rp/Δp is the firstorder momentum resolution when 1 mm object size is assumed)

	ACC / ACC-2 FLNR JINR	RIPS / BigRIBS RIKEN	A1900 MSU	FRS / SuperFRS GSI	LISE3 GANIL
ΔΩ, msr	0.9 / 5.8	5.0 / 8.0	8.0	0.32 / 5.0	1.0
Δp/p, %	± 2.5 / ± 3.0	± 3.0 / 6.0	± 5.5	± 2.0 / 5.0	± 5.0
Rp/∆p	1000 / 2000	1500 / 3300	2915	8600 / 3050	2200
Βρ, Τm	3.2 / 3.9	5.76 / 9.0	6.0	18 / 18	3.2 - 4.3
Length, m	21 / 38	27 / 77	35	74 / 140	19(42)
E, AMeV	10÷40 / 6÷60	50÷90 / 350	110÷160	220÷1000/1500	40÷80
Additional RIB Filter	No / RF-kicker	RF-kicker / S-form	S-form & RF- kicker	S-form / Preseparator	Wien Filter

... somewhere among other facilities

Grzegorz Kaminski, INPC2016, Adelaide

FLNE

calculations done with LISE++

Primary beam		Radioactive Ion Beam			
lon	Energy, MeV/u	lon	Energy, MeV/u	Intensity, s ⁻¹ (per 1 pµA)	Purity, %
¹¹ B	32	⁸ He	26	3*10 ⁵	90
¹⁵ N	49	¹¹ Li	37	3*10 ⁴	95
¹¹ B	32	¹⁰ Be	26	1*10 ⁸	90
¹⁵ N	49	¹² Be	38.5	2*10 ⁶	70
¹⁸ 0	48	¹⁴ Be	35	2*10 ⁴	50
22		¹⁷ C	33	3*10 ⁵	40
²² Ne	44	¹⁸ C	35	4*10 ⁴	30
³⁶ S	64 (U400M upgrade)	²⁴ 0	40	2*10 ²	10 (with RF kicker)
10 _B	39	⁷ Be	26	8*10 ⁷	90
²⁰ Ne	53	¹⁸ Ne	34	2*10 ⁷	40
³² S	52	²⁸ Be	31	2*10 ⁴	5 (with RF kicker)

Scope of activity for ACCULINNA-2

Competitive light nuclei RIB program at ACCULINNA-2

ACCULINNA-2 instrumentation development

Detectors development

High-resolution telescope array

Neutron detection system (stilbene crystals)

γ-array GADAST

New Optical Time Projection Chamber OTPC (UW, Warsaw)

Grzegorz Kaminski, INPC2016, Adelaide

From contract with SIGMA PHI to installation: 2011 - 2015

« In the beginning, there was Chaos »

Greek Mythology – The Creation

Grzegorz Kaminski, INPC2016, Adelaide

Magnets: some big ones

Grzegorz Kaminski, INPC2016, Adelaide

Grzegorz Kaminski, INPC2016, Adelaide

Room 2: floor reinforcement

Grzegorz Kaminski, INPC2016, Adelaide

The near future

PARAMETERS	values		
Maximum field - Bmax	1.382T		
Nominal field - Bnom	1.207T		
Minimum field - Bmin	0.403T		
Gap	180 mm		
Effective length for Bnom	522.58mm		
Effective length variation Bnom - Bmin	5.56mm		
nominal integrated field – Blnom	630.65T.mm		
Ampere turns per pole for Bnom	93540A.t		
Ampere turns per pole for Bmin	29376A.t		
Ampere turns per pole for Bmax	115200A.t		
Stored Energy for Bmax	99500J		
Good field region dimensions	H ±250mm		
	V ±65mm (info)		
Transverse Field homogeneity @ Bnom	0/2.7x10 ⁻³ Midplane		
Transverse Field homogeneity @ Bmin	0/2.2x 10 ⁻³ Midplane		
Integrated Field homogeneity @ Bnom	-1.53x10 ⁻³ /1.22x10 ⁻³		
Integrated Field homogeneity @ Bmin	-1.39x10 ⁻³ /1.06x10 ⁻³		

Frequency range (MHz)	14,5 - 20
Peak voltage (KV)	120
GAP (mm)	70
Width of electrode (mm)	120 min
Length of electrodes (mm)	700
Cylinder diameter (mm)	1200 max
Stem diameter (mm)	120 max
Length of coaxial line from beam axis (mm)	1830
RF power (Watts)	10 000
Reactance Q	8 500

Experiments @ ACCULINNA&ACCULINNA-2

More details about proposed reactions at ACCULINNA-2 G. Kamiński talk, Thursday R3 : 16:05

⁷H: experiments to be done at ACCULINNA-2

 10^{-}

4n-decay

 0^{-20}

L. V. Grigorenko et al., Phys. Rev. C 84, 021303(R)

(2011).

<u>M.S. Golovkov et al., Phys. Lett. B **588**, 163 (2004) Limit $T_{1/2} < 1$ ns was set for the ⁷H lifetime, which allowed the authors to estimate a lower limit of 50– 100 keV for the ⁷H energy above the ³H + 4n breakup threshold.</u>

Exciting option is to try the ${}^{8}\text{He} + {}^{3}\text{H}$ reaction.

The 4n transfer can be searched for down to a limit of $d\sigma/d\Omega \sim 10$ nb/sr.

The 2n transfer and triton transfer channels, as well as elastic scattering, will be accessible for study.

ACCULINNA-2 ⁹He from the ⁸He(²H,p)⁹He reaction

φ80 x 50

¹⁰He: prospects assumed for ACCULINNA-2

S. I. Sidorchuk et al., Phys. Rev. Lett. 108, 201502 (2012)

¹⁰He from ⁸He(³H,p)¹⁰He

¹⁰He missing mass spectrum. Points with error bars correspond to the total data array; the grey histogram was obtained for $\varepsilon < 5$. The dashed histogram describes the behavior of the detection efficiency for 8He-p coincidences

ine ironi ine(in,p) ine	AC <u>Missing n</u> Count number in 0 ⁺ state	CCULINNA nass spectrum ~120	ACCULINNA-2 $2 \ge 10^4$	
	Resolution	500 keV	200 keV	
	Resolution in θ_{8He} 12° 0.3° <u>Correlation analysis for the tripple (p-8He-n) events</u>			
Other reactions	$(E_{\rm T} = 0 - 10 {\rm MeV})$ –	-	3 x 10 ⁵	
Counts i	¹¹ Li(² H, ³ He) ¹⁰ He <u>Missing mass spectrun</u> n 0 ⁺ state 2 x 10 ³	¹⁴ Be	(²H, ⁶Li) ¹⁰ He 3 x 10 ³	
Resolutio	n 400 keV		200 keV	

Grzegorz Kaminski, INPC2016, Adelaide

- > 17 Ne is 2*p*-halo candidate
- ▶ ¹⁷Ne is only one known nuclear system, which excited state can decay through direct 2p emission.
- 2p radiative capture is a possible by-pass of the ¹⁵O waiting point in the astrophysical rp-process

Combined mass approach to the study of decay modes of exotic nuclei.

Combined mass spectrum of ¹⁷Ne measured by the Acculinna provided a limit $\Gamma_{2p}/\Gamma_{\gamma} < 8 * 10^{-5}$ [**P. Sharov et al., talk given at EXON2016**].

Our task is to come to a level of $\Gamma_{2p}/\Gamma_{\gamma} \sim (2-3) * 10^{-6}$ in a priority experiment which will be carried out at ACCULINNA-2.

Fig. Charged-particle spectrum of the decay of 27 S nuclei implanted in the E3 silicon detector. Proton groups above about 7 MeV have to be reconstructed by summing the energy signals from detectors E3 and E4.

clei implanted in the E3 silicon detector. Proton groups above about 7 MeV have to be reconstructed by summing the energy signals from detectors E3 and E4.

In 2017 a new measurment of β - delayed particle emission from ²⁷S @ ACCULINNA-2 is planned \rightarrow much better statistic of two order of magnitude expected = hunting for 3p decay

- Glorious history of light exotic nuclei studies at JINR
- World-class current research program light exotic nuclei
- Specific energy range intermediate energy direct transfer reactions
- Specific techniques + theory school –(few-body) correlation studies
 - Clear plans for the nearest years:
 - ACCULINNA-2 beam test this year
- Instrumentation development + accelerator upgrade
 = user facility

We plane to extend our studies on more exotic species

THANK YOU FOR ATTENTION!

