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thermodynamic quantity  
in finite-T QCD

integration method 
differential method

calculate free energy 
classical thermodynamics 
macroscopic picture

energy-momentum tensor 
(EMT)

quantum field theory 
microscopic picture

pressure, entropy, traceanomaly… 
shear / bulk viscosity
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H.Meyer’s plenary talk on Tuesday



EMT on Lattice
Lattice regularization: a nonperturbative regularization 
                                  gauge invariant 
                                  discretize space-time coord.

generator of general coord. transformation



EMT on Lattice
Lattice regularization: a nonperturbative regularization 
                                  gauge invariant 
                                  discretize space-time coord.

generator of general coord. transformation

same quantum number with the vac. (signal is noisy)



Quantum field theory 
(UV divergence)

perturbation with 
dim. reg. 

+YM gradient flow  
(general covariance OK!)

lattice reg. 
+Wilson flow 
(with a->0 limit)

Firstly, we obtain the relation between them perturbatively.  
Assume that it applies to the nonperturbative regime.

Basic Idea

At finite flow time, UV finite!
Luescher and Weisz, JHEP 1102, 051(2011) 



YM gradient flow

Flow equation Luescher, JHEP 1008, 071 (2010)

x = (~x, ⌧)

t: fictitious time direction (flow-time)

U

µ

(x) = e

ig0Aµ(x)link variable:



UV finiteness of the gradient flow

modes are suppressed (a smooth UV cutoff)

Finiteness is shown perturbatively in all order  
Luescher and Weisz, JHEP 1102, 051(2011) 

p2 > 1/t

�tBµ(t, x) = D�G�µ(t, x) Bµ(t = 0, x) = Aµ(x)

Flow equation (continuum)
initial condition:

Bµ(t, x) =
�

dDyKt(x� y)Aµ(y)
perturbative solution in the leading order

Kt(z) =
�

dDp

(2�)D
eipze�tp2

|x| <
�

8tSmeared in the range
signal becomes clear?



Energy-momentum tensor

Renormalized EMT within dim. reg.

Dim=4 gauge invariant operator on Lattice

Here, ops. are constructed by flowed field.



relation…dim.=4 op on the lattice vs. renormalized EMT at small flow-time

coefficients…given by renormalized coupling and coeff. of beta fn.

Suzuki, PTEP 2013, no8, 083B03, [Erratum: PTEP2015,079201(2015)], 

MSbar schemeb01-loop coeff. of beta fn.
s1 = 0.03296...
s2 = 0.19783...

-0.0863575
0.05578512

``Suzuki method”
- small flow-time expansion -

cf.) Nonperturbative method:L.DelDebbio, A.Patella,A.Rogo, JHEP 1311,212(2013)



How to get EMT
Step 1
Generate gauge configuration at t=0 (usual process)

Step 2
Solve the Wilson flow eq. and generate the gauge configuration at flow 
time (t)

a�
�

8t� ��1
QCD or T�1

Step 3
Measure two dim=4 ops. using flowed gauge configuration

Uµ�(t, x), E(t, x)Step 4
Take the continuum limit. Then take t->0 limit. 
(Take care the feasible window of flow time)

TR
µ�(x) = lim

t�0

�
1

�U (t)
Uµ�(t, x) +

�µ�

4�E(t)
[E(t, x) � �E(t, x)�0]

�

for quenched QCD



One-point fn. of EMT 
in finite temperature quenched QCD

Asakawa, Hatsuda, E.I., Kitazawa, Suzuki (FlowQCD coll.)
Phys.Rev. D90 (2014) 1, 011501



Simulation setup
Wilson plaquette gauge action 
lattice size (Ns=32, Nt=6,8,10,32) 
# of confs. is 100 - 300 
simulation parameters

Temperature is determined by  
Boyd et. al. NPB469,419 (1996) 

Parametrization is given by 
alpha collaboration NPB538,669 (1999)



feasible flow time

2a <
�

8t < N�a/2

- show a plateau 
  (small higher dimensional op.) 
  Practically, no need t-> 0 limit 
 **finer lattice simulation shows a slope 

- systematic error coming from scale 
setting is dominated in entropy densityeach dark color shows statistical error 

each light color includes systematic error

flow time dependence 
(T=1.65Tc)

longer than lattice cutoff 
avoid an over-smeared regime0
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Continuum extrapolation
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Revised

p
8tT = 0.35

3point linear extrap. 
(2pt. const. extrap.) 

p
8tT = 0.40

We also see the data at

In cont.lim. the result is consistent.

t->0 limit is not needed  
in this case



Boyd et. al. NPB469,419 (1996) 

Okamoto et. al. (CP-PACS) PRD60, 094510 
(1999) 

Borsanyi et. al. JHEP 1207, 056 (2012)
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our result
Borsanyi et al.
Okamoto et al.
Boyd et al.

Phys.Rev. D90 (2014) 1, 011501, arXiv:1312.7492v3[hep-lat]

Comparison with the results  
given by integration method

Revised

Integration method is based on  
(macroscopic) thermodynamics. 

Our method is based on the 
(microscopic) quantum field theory.



two-point fn. of EMT



Shear viscosity in QGP phase

Matsubara-Green’s function G12(t),
Nakamura-Sakai(2005)
800,000 conf.

shear viscosity: retarded Green’s fn.

⌘ = �
Z

hT12(~x, ⌧)T12(~x
0
, 0)iret.

obtained by the analytic continuation 
of Matsubara Green’s fn.

G�(~p, t) =
X

n

ei!nt

Z
d!

⇢(~p,!)

i!n � !



Renormalization
T (R)
µ⌫ (g0) = Z(g0)T

(bare)
µ⌫

Meyer (2007)…1loop approximation 
Fodor et al. (2013)…calculate Z-factor from entropy density 
This work      … Not necessary  
                     (usage of Suzuki coefficient and MSbar coupling)

cf.) 

hT12T12i =
1

4
h(T11 � T22)(T11 � T22)i

sT

4
= hT (R)

11 i



lattice raw data
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EMT correlator
TR
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conclusion
 Novel method to obtain EMT using the lattice simulation 

 quenched results (1pt.fn) show that the small flow time expansion is promising 

 clear statistical signal, small systematic error 

 Z-factor of the bosonic ops. are not needed 

 2pt. fn. and full QCD simulation are also doable!!

future directions

 two-point function of EMT (shear and bulk viscosity, heat capacity) 

 application to the other theories 

 conformal field theory (central charge, dilation physics) 

 nonlinear sigma model 

Nf=2+1 QCD 
E.I. et al.; arXiv:1511.03009 
WHOT coll, arXiv:1609.01417


