Sign of enhanced radius of Hoyle rotational state in α + ¹²C inelastic scattering

M. Tomita, Iwasaki, R. Otani, M. Ito

Department of Pure and Applied Physics, Kansai University

- 1. Background: Probe of 3α size through ${}^{12}C \Rightarrow 3\alpha$ inelastic scattering Present status and problem
- **2**. Our viewpoint and analysis: Comparison of 2_1^+ with 2_2^+
- **3.** Results: α +¹²C inelastic scattering and spatial size of the reaction
- 4. Discussion: Lower limit of the matter radius of Hoyle rotational 2₂⁺
- 5. Summary and future studies

Background

There are several studies that try to get the signature of the enhanced 3α radius in the inelastic scattering of ${}^{12}C_{g.s.} \rightarrow {}^{12}C(0_2^+)$.

A. Diffraction model

```
p + <sup>12</sup>C: K. lida et al., MPLA27 (2012)
light-ion + <sup>12</sup>C: A. N. Danilov et al., PRC80 (2009)
```

An enhanced diffraction radius is obtained in the transition of ${}^{12}C_{g.s.} \rightarrow {}^{12}C(0_2^+)$

B. Microscopic coupled-channel calculations

 $\begin{bmatrix} \alpha + {}^{12}C \text{ inelastic scattering: S. Ohkubo et al., PRC70 (2004)} \\ \text{Evolution of Airy structures are confirmed in the } {}^{12}C_{g.s.} \rightarrow {}^{12}C(0_2^+) \text{ scattering} \end{bmatrix}$

Criticism by M. Takashina et al., PRC78 (2008), PRC74 (2006)

 \Rightarrow Inelastic scattering to Hoyle state does NOT reflect the size of the 3 α matter radius Angular distribution is mainly determined by the size of the coupling potential

Radius

3.47[fm]

Problem to get a sign of enhanced 3α radius in ¹²C inelastic scattering

- 1. Comparison of 0_1^+ with 0_2^+
 - $0_2^+ \Rightarrow$ Inelastic scattering
 - $0_1^+ \Rightarrow$ Elastic scattering
- \Rightarrow Invalid comparison !
- 2. Comparison of 2_1^+ , 3_1^- with 0_2^+

There are finite-spin effects in the 2_1^+ and 3_1^- channels

⇒Unfair comparison !

Theory, Y. Funaki, EPJ24,321 (05)

Our viewpoint

We consider comparisons of 2_1^+ with 2_2^+ channels (Fair comparison) The difference of the 2_1^+ and 2_2^+ channels is just a size of their matter radius

Present report

We demonstrate that a sign of the enhanced radius of 2_2^+ appears in $\alpha + {}^{12}C$ inelastic scattering by performing the microscopic coupled channels.

 r_{i}^{2} : ¹²C density is calculated by M. Kamimura 3 α RGM Channels: $0_1^+, 0_2^+, 0_3^+, 2_1^+, 2_2^+, 3_1^-$

Results of the differential cross section in α + ¹²C

prm8

Energy systematics of enhancement of R_{sc}(2⁺)

Summary

- A comparison of 2_1^+ and 2_2^+ exit channels is possible to probe an enhanced radius of Hoyle rotational 2_2^+ state.
- We introduce the scattering radius (R_{sc}) to characterize a size of reaction.
- Microscopic coupled-channels of α + ¹²C are performed and scattering radii (R_{sc}) are derived for various exit channels.

Results

- Shrunk differential and extended partial cross sections are observed in 2_2^+
- R_{sc} of 2_2^+ is enhanced by about 1 fm in comparison to that of 2_1^+ .
- \Rightarrow Calculation predicts that extension of Hoyle rotational 2_2^+ can be probed.

Future subject

- Measurement of Ex=10MeV cross section over a wide energy and scattering angle is important.
- Careful MDA should be done for the differential cross section of Ex=10MeV state.

Application of the diffraction theory

K. lida et al., MPLA 27 (2012)J. S. Blair, Phys. Rev. 115 (1959)

$$\frac{d\sigma}{d\Omega} \left(0_1^+ \to 2^+ \right) \propto J_0^2(x) + 3J_2^2(x) \qquad x = 2ka \sin\left(\frac{\theta_{c.m.}}{2}\right)$$

Relation of scattering radius and 3α matter radius

In a naïve consideration, we can image the following relation,

$$R_{matter}(2_{2}^{+}) \geq R_{matter}(2_{1}^{+}) + \Delta Rsc(2^{+})$$

$$II$$

$$R_{matter}(0_{1}^{+}) \sim 1 \text{ fm}$$

$$= 2.4 \text{ fm}$$

$$Prediction \text{ at}$$

$$Elab \leq 240 \text{ MeV}$$

We can speculate the lower limit of the matter radius of 2_2^+

$$R_{matter}(2_2^+) \ge 3.4 \text{ fm}$$

Comparison of experiment and Theory (Elab = 386 MeV)

In the 2_2^+ distribution, shrinkage and rapid fall down can be clearly observed $\Delta R_{sc} = Rsc(2_2^+) - R_{sc}(2_1^+) = 0.6 \text{ fm} (\Delta R_{sc} \sim 1 \text{ fm}, \text{ Elab} \leq 240 \text{ MeV})$

prm8

Scattering radius in α + ¹²C (E_{lab} = 386 MeV)

$$R_{SC} = \frac{\overline{L}}{k}$$
 : scattering radius

Effective orbital spin

Incident Partial cross orbital spin section

Ref.: M. Tomita et al., PRC89 (2014)

	0 ₁ ⁺	2 ₁ ⁺	02+	2 ₂ ⁺	3 ₁ ⁻
effective orbital spin \overline{L}	22.87	29.67	33.83	33.69	31.76
scattering radius R^{lpha}_{SC} [fm]	3.53	4.58	5.21	5.20	4.90
matter radius $ar{r}$ [fm]%	2.40	2.38	3.47	4.00	2.76

XM. Kamimura, NPA351 (1981).

 $R_{SC}(2_2^+)$ is more enhanced by about 0.62 fm than $R_{SC}(2_1^+) \Rightarrow 3\alpha$ structure in 2_2^+

Transition densities and coupling potential: $0_1^+ \Rightarrow 2_1^+, 2_2^+$

The coupling potential to 2_{2}^{+} is extended by about 0.5 fm in comparison to 2_{1}^{+}

The extension of the coupling pot. of 2_2^+ is due to the developed 3α structure

Scattering angle (degrees)

Final state distortion and CC effect

	2ch. w/o Distortion	2ch. With Mono-Dis.	2ch. With Full-Dis.	Full CC calculation
Rsc(2 ₁ +)	3.92	4.37	4.36	4.37
Rsc(2 ₂ ⁺)	4.42	5.15	5.16	5.30
ΔRsc	0.50	0.78	0.80	0.93
ΔR(Vcp)	0.60	0.60	0.60	0.60

VCP:54%, Distortion:33%, CC-effect:13%

Systematics of the coupling potential: $0_1^+ \Rightarrow 2_1^+$,

Sensitivity of the transition density to the matter radius

Black sphere limit of the scattering radius

We consider the high energy scattering by a black sphere potential

Partial cross section of the BS scattering

$$L_{\max} = ka$$

$$\sigma(L) \propto \begin{cases} 2L+1 & \text{for } L \le L_{\max} \\ 0 & \text{for } L > L_{\max} \end{cases}$$

Effective orbital spin and the scattering radius

$$\overline{L} = \sqrt{\sum_{L=0}^{L_{\text{max}}} L^4 \sigma(L)} \qquad \overline{L} = \sqrt{\frac{2}{3}} ka = \sqrt{\frac{10}{9}} k \underline{r}_{BS} \approx \sqrt{\frac{10}{9}} k \underline{r}_{matter} \qquad A. \text{ Kohama et al.} \\ \text{PRC69 (2009)} \qquad \overline{L}/k = R_{SC} \approx 1.05 r_{matter} \qquad (\text{ high Energy limit })$$

Comparison with the complex g-matrix NN int.

Dotted curve: complex g-matrix NN int.

Solid curve: DDM3Y NN int.

Differential and Partial cross sections: ¹⁶O + ¹²C

Uncertainty Relation: $L\theta \approx \hbar$

Differential and Partial cross sections: 1H + 12C

 $p+ {}^{12}C(0_1^+) \Rightarrow p + {}^{12}C(2^+)$

Uncertainty Relation: $L\theta \approx \hbar$

Systematics of the scattering radii (1)

 $\Delta R_{SC} = RSc(2_2^+) - R_{SC}(2_1^+) = 1.0 \text{ fm in average}$

 ΔR_{sc} is about 1.3~2 times larger than $\Delta R(V_{CP})$

Transition Densities: $0_1^+ \Rightarrow 2_1^+, 2_2^+$

Red: $0_1^+ \Rightarrow 2_2^+$ Black: $0_1^+ \Rightarrow 2_1^+$

Previous works (1): Diffraction model (p+¹²C)

K. lida, A. Oyamatsu, A. Kohama, MPLA27 (2012)

 $\ln^{12}C_{g.s.} \rightarrow^{12}C(0_{2}^{+})$, diffraction radius is enhanced in the 3α final channel.

The enhancement of the diffraction radius is clearly confirmed,

but the relation of the 3α wave function and diffraction radius still remains unclear.

Diff. radius \Rightarrow the size of the coupling potential ?? (Pointed out by Takashia).

Previous works (2): Microscopic coupled-channel (α +¹²C)

S. Ohkubo and Y. Hirabayashi, Phys. Rev. C70, 041602(R) (2004)

The microscopic coupled-channel calculation is performed for an α scattering by ^{12}C (Folding model with 3a RGM w.f. + DDM3Y NN int.)

In ${}^{12}C_{g.s.} \rightarrow {}^{12}C(0_2^+)$, Evolution of the Airy minima is observed.

⇒ Evolution is a sign of the enhanced attraction at the surface region of the 3a state !?

Previous works (3): Analysis of the MCC(⁴He+¹²C)

M. Takashina and Y. Sakuragi, Phys. Rev. C74, 054606 (2006)

In the microscopic coupled-channel calculation, the sensitivity of the angular distribution to the size of the 3α state is investigated.

Oscillating pattern is quite INSENSITIVE to the radius of the final 3α state

Oscillation is quite SENSITIVE to a size of the transition potential of ${}^{12}C_{g,s} \rightarrow {}^{12}C(0_2^+)$