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Excited 0,*

Background
There are several studies that try to get the signature of the Radius
enhanced 3a radius in the inelastic scattering of *2C, , —*2C(0,"). 3.47[fm]

A. Diffraction model

Radius
p + 12C: K. lida et al., MPLA27 (2012) 2.40[fm]

light-ion + 12C: A. N. Danilov et al., PRC80 (2009) Ground 0,*

An enhanced diffraction radius is obtained in the transition of **C, ; —*C(0,")

B. Microscopic coupled-channel calculations

o + 12C inelastic scattering: S. Ohkubo et al., PRC70 (2004)

Evolution of Airy structures are confirmed in the '2C ¢ - *2C(0,*) scattering

@® Criticism by M. Takashina et al., PRC78 (2008), PRC74 (2006)
= Inelastic scattering to Hoyle state does NOT reflect the size of the 3a matter radius

Angular distribution is mainly determined by the size of the coupling potential



Problem to get a sign of enhanced 3a radius in *?C inelastic

scattering

1. Comparison of 0,* with 0,*

0, = Inelastic scattering

0,* = Elastic scattering

=Invalid comparison !

2. Comparison of 2,*, 3, with 0,*

There are finite-spin effects in
the 2,* and 3, channels

=Unfair comparison !

| Our viewpoint |
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We consider comparisons of 2,* with 2,* channels (Fair comparison)

The difference of the 2,* and 2, channels is just a size of their matter radius



Present report

We demonstrate that a sign of the enhanced radius of 2,* appears in
a + 12C inelastic scattering by performing the microscopic coupled channels.
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Results of the differential cross section in a + 2C prm8

E., =386 MeV @ :experimental data (M. Itoh, PRC84) Blue curves: Coupled-channels
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Comparison of o + 12C(0,*) =a + 12C(2, ,*)
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L =kR,. — Ry(2,7)=52fm, Rg(2,")=4.6fm,

ARsc =R¢e( 2,7 ) — Ree( 2,*) = 0.6 fm = 3a structure in 2,*



Energy systematics of enhancement of R_(2*)
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Summary

* A comparison of 2,* and 2,* exit channels is possible to probe an
enhanced radius of Hoyle rotational 2,* state.

* We introduce the scattering radius (R, ) to characterize a size of reaction.

* Microscopic coupled-channels of a + 12C are performed and scattering
radii (R, ) are derived for various exit channels.

Results

* Shrunk differential and extended partial cross sections are observed in 2,*

* R, of 2,"is enhanced by about 1 fm in comparison to that of 2,*.

= Calculation predicts that extension of Hoyle rotational 2,* can be probed.

Future subject

* Measurement of Ex=10MeV cross section over a wide energy and scattering angle
is important.

 Careful MDA should be done for the differential cross section of Ex=10MeV state.







Application of the diffraction theory
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Relation of scattering radius and 3o matter radius

In a naive consideration, we can image the following relation,

(2,Y) 2 R__. (2,%) + ARsc(2")

Al 1
(() +) ~ 1fm

matter

matter
Prediction at

=2.4 fm Elab = 240 MeV

We can speculate the lower limit of the matter radius of 2,*

(2,*) =2 3.4fm

matter



Comparison of experiment and Theory ( Elab = 386 MeV ) prma

Present calculations Exp. MDA by M. Itoh et al., PRC84 (2011)
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In the 2,* distribution, shrinkage and rapid fall down can be clearly observed

AR =Rsc(2,") —R(2,")=0.6fm (AR, ~ 1fm, Elab=240MeV)



Scattering radius in a + °C ( E_, = 386 MeV )

. JEL JLz+1)]o(t)

: _ L
Ry = ; . scattering radius

3 WL +1)[ o(z)
Effective Incident Partial cross
orbital spin orbital spin  section

01+ 21+ 02+ 22+ 31_
effective orbital spin L | 22.87 | 29.67 | 33.83 [33.69 31.76

Ref.: M. Tomita et al., PRC89 (2014)

scattiringradius 353 458 | 521 | 520 | 490
RS [fm]

matter radius
- 2.40 238 | 347 | 400 | 2.76

P¢M. Kamimura, NPA351 (1981).

Rec( 2,7 ) is more enhanced by about 0.62 fm than Ri( 2,*) = 3a structurein 2,*



Transition densities and coupling potential: 0,* = 2,*, 2,*

12C transition density a + 12C Folding potential
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The coupling potential to 2,* is extended by about 0.5 fm in comparison to 2,*

The extension of the coupling pot. of 2," is due to the developed 3a structure



Sensitivity to the size of the 2,* state

Differential cross sections ( a. u. )
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Sensitivity to the size of the 0,* state

Differential cross sections ( a. u. )
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Final state distortion and CC effect

2ch.w/o |2ch.With |2ch. With | Full CC
Distortion | Mono-Dis. |Full-Dis. | calculation
Rsc(2,7) | 3.92 4.37 4.36 4.37
Rsc(2,') | 4.42 5.15 5.16 5.30
ARsc 0.50 0.78 0.80 0.93
AR(Vcp) | 0.60 0.60 0.60 0.60

VCP:54%, Distortion:33%, CC-effect:13%




Systematics of the coupling potential: 0,* = 2%,
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Sensitivity of the transition density to the matter radius
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Black sphere limit of the scattering radius

We consider the high energy scattering by a black sphere potential

Black sphere potential

A
W(r) a
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Comparison with the complex g-matrix NN int.

Dotted curve: complex g-matrix NN int.

Solid curve: DDM3Y NN int.
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Differential and Partial cross sections: 160 + 12C

160 + 12C(01+) = 160 + 12C(2+)
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Differential and Partial cross sections: 1H + 12C
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Systematics of the scattering radii (1)

Scattering radii ( fm )
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AR = Rsc( 2," ) —Rqc(2,%) =1.0fm in average



Systematics of the scattering radii (2)

Difference of radii ( fm )
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Comparison of Rsc and coupling potential
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AR is about 1.3~2 times larger than AR(V )



Transition Densities: 0, = 2,7, 2,°

Transition density Charge form factor
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Previous works (1): Diffraction model (p+12C)

K. lida, A. Oyamatsu, A. Kohama, MPLA27 (2012)

Int2C, —'C(0,"), diffraction radius is enhanced in the 3a final channel.

Formula of the inelastic Fraunhofer diffraction
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m==h=tr Diff. radius
larget Final state Feow (NeV) T, (MeV) a or a; (fm)
12C 2.8, 0.00 1040 2.754+0.06
21 1.44 1040 2.704+0.06
0t 7.65 1040 3.204+0.07
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Inelastic Fraunhofer diff. pattern

The enhancement of the diffraction radius is clearly confirmed,
but the relation of the 3a wave function and diffraction radius still remains

unclear.

Diff. radius = the size of the coupling potential ?? (Pointed out by Takashia).



Previous works (2): Microscopic coupled-channel (o+2C)

S. Ohkubo and Y. Hirabayashi, Phys. Rev. C70, 041602(R) (2004)

The microscopic coupled-channel calculation is performed for an a scattering by 12C
( Folding model with 3a RGM w.f. + DDM3Y NN int. )
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In12C, , - *2C(0,*), Evolution of the Airy minima is observed.

= Evolution is a sign of the enhanced attraction at the surface region of the 3a state !?



Previous works (3): Analysis of the MCC (*He+12C)

M. Takashina and Y. Sakuragi, Phys. Rev. C74, 054606 (2006)

In the microscopic coupled-channel calculation, the sensitivity of the angular
distribution to the size of the 3a state is investigated.
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Oscillating pattern is quite INSENSITIVE to the radius of the final 3o state

Oscillation is quite SENSITIVE to a size of the transition potential of *2C, ( - *2C(0,")



