

Development of laser spectroscopic method using superfluid helium for the study of low-yield nuclei

Meiji University, Dept. of Phys. / RIKEN Nishina Center Kei IMAMURA

INPC 2016, Adelaide Australia, Sep 11-16

Laser spectroscopy of atoms using superfluid helium

- Measurement of Nuclear spin *I*, moment μ_I **Powerful tool:** Laser spectroscopy Problem: Low efficiency

Advantage of superfluid helium

"Suitable for studying low-yield exotic nuclei"

Optical pumping and double resonance method

Result of experiment using RIPS at RIKEN and identified difficulties

Successful observation of HFS/Zeeman resonance Beam intensity: - 10⁴, Mes. time: 40 min.

1.Laser stray light -How to reduce ?-

→ Change the system for the wavelength separation

Reduction of noise due to laser stray light

1.Laser stray light -Performance evaluation-

1.Laser stray light -Result of experiment-

2.Small resonance signal intensity -Was MW power enough?-

2.Small resonance signal intensity –Result and discussion-

Summary and outlook

*Developing a nuclear laser spectroscopy technique OROCHI for the study of low-yield exotic nuclei

*In the online experiment, we successfully observed HFS/Zeeman resonance spectra. However, we required the beam intensity of 10⁴ pps at minimum.

* Towards lower-yield nuclei (< 100pps) Developing the new florescence detection system Evaluating MW power dependence of resonance signal intensity.

*As a result of development, we expect S/N ratio approximately 150 times higher.

*In Dec. 2016, we will perform a beam experiment to evaluate minimum beam intensity to observe the double resonance spectra using the system.

Collaborators

Meiji University / RIKEN Nishina Center : Kei Imamura

Osaka Univ.: Tomomi Fujita

Hosei University: Tsuyoshi Egami, Taishi Nishizaka, Daiki Tominaga, Takafumi Kawaguchi, Wataru Kobayashi, Makoto Sanjo, Yukari Matsuo

RIKEN Nishina Center: Aiko Takamine, Yuichi Ichikawa, Hideki Ueno

Tokyo Metropolitan University : Takeshi Furukawa

NIRS: Takashi Wakui

Meiji Univ.: Yutaro Nakamura, Hitoshi Odashiima

Thank you for your attention !!

Backup slide

Resonance intensity vs MW antenna position

Signal intensity of double resonance spectra

- v_e :MW resonance rate
 - :pumping rate
- α , β : Spontaneous emission

LIF intensity =
$$\frac{\Gamma(\alpha + \beta)}{3\Gamma + 2(\alpha + \beta) + \beta \cdot \Gamma/v_e}$$

Comparison of new and old fluorescence system

Atomic bubble model in superfluid helium

Need more energy → blue shifted abs. spectrum
Different atom-He distance → broadened spectra

Optical pumping of atoms in superfluid helium

2.Small resonance signal intensity -Experimental setup-

Hyperfine structure in magnetic field

$$\begin{split} W(F, m_F) &= -\Delta W/2(2I+1) - \mu_I m_F B/I \\ &\pm (\Delta W/2) \cdot [1 + \{4m_F/(2I+1)\} \cdot (1+\epsilon)x + (1+\epsilon)^2 x^2] \end{split}$$

 ΔW : hyperfine splitting $x = g_{J}\mu_{B}B/\Delta W$ $\varepsilon = g_{N}\mu_{N}/g_{J}\mu_{B}$

Frequency sift due to applied magnetic field

Double resonance spectra in He II

K. Imamura et al., Hyperfine Interact., 230, 73 (2014)

Y. Matsuura, Master Thesis, Meiji University(2010)

Cryostat for online experiment

