Compositeness of hadrons from effective field theory

Yuki Kamiya, <u>Tetsuo Hyodo</u>

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Method to study the internal structure

Internal structure of excited hadrons?

Method to study the internal structure

Internal structure of excited hadrons?

Conventional structure

Exotic structures

- Weak binding relation: observables -> compositeness

S. Weinberg, Phys. Rev. 137, B672 (1965)

Weak binding relation for stable states

Compositeness of s-wave weakly bound state (R >> Rtyp)

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)</u>

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}, \quad r_e = R\left\{\frac{X-1}{X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

a₀: scattering length, r_e : effective range R = $(2\mu B)^{-1/2}$: radius of wave function R_{typ}: length scale of interaction X: probability of finding composite component

Weak binding relation for stable states

Compositeness of s-wave weakly bound state (R >> R_{typ}**)**

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)</u>

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}, \quad r_e = R\left\{\frac{X-1}{X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

a₀: scattering length, r_e : effective range R = $(2\mu B)^{-1/2}$: radius of wave function R_{typ}: length scale of interaction X: probability of finding composite component

- deuteron is NN composite (a $_0 \sim R \gg r_e$) —> X ~ 1
- internal structure from observable
- no nuclear force potential / wavefunction of deuteron

Note: applicable only for stable states

Effective field theory

Low-energy scattering with near-threshold bound state

- Nonrelativistic EFT with contact interaction

D.B. Kaplan, Nucl. Phys. B494, 471 (1997) Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016)

Effective field theory

Low-energy scattering with near-threshold bound state

- Nonrelativistic EFT with contact interaction

D.B. Kaplan, Nucl. Phys. B494, 471 (1997) Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016)

$$H_{\text{free}} = \int d\mathbf{r} \left[\frac{1}{2M} \nabla \psi^{\dagger} \cdot \nabla \psi + \frac{1}{2m} \nabla \phi^{\dagger} \cdot \nabla \phi + \frac{1}{2M_0} \nabla B_0^{\dagger} \cdot \nabla B_0 + \nu_0 B_0^{\dagger} B_0 \right],$$

$$H_{\text{int}} = \int d\mathbf{r} \left[g_0 \left(B_0^{\dagger} \phi \psi + \psi^{\dagger} \phi^{\dagger} B_0 \right) + v_0 \psi^{\dagger} \phi^{\dagger} \phi \psi \right]$$

$$B_0 = \phi \phi \phi$$

$$B_0 + \psi \psi \psi$$

- cutoff : $\Lambda \sim 1/R_{typ}$ (interaction range of microscopic theory)

- At low momentum $p \ll \Lambda$, interaction ~ contact

Compositeness and "elementariness"

Eigenstates

$$H_{\text{free}} | B_0 \rangle = \nu_0 | B_0 \rangle, \quad H_{\text{free}} | \mathbf{p} \rangle = \frac{p^2}{2\mu} | \mathbf{p} \rangle \quad \text{free (discrete + continuum)}$$
$$(H_{\text{free}} + H_{\text{int}}) | B \rangle = -B | B \rangle \qquad \qquad \text{full (bound state)}$$

Compositeness and "elementariness"

Eigenstates

$$H_{\text{free}} | B_0 \rangle = \nu_0 | B_0 \rangle, \quad H_{\text{free}} | \mathbf{p} \rangle = \frac{p^2}{2\mu} | \mathbf{p} \rangle \quad \text{free (discrete + continuum)}$$
$$(H_{\text{free}} + H_{\text{int}}) | B \rangle = -B | B \rangle \qquad \qquad \text{full (bound state)}$$

- normalization of |B> + completeness relation

$$\langle \, B \, | \, B \,
angle = 1, \quad 1 = | \, B_0 \,
angle \langle \, B_0 \, | + \int rac{d oldsymbol{p}}{(2\pi)^3} | \, oldsymbol{p} \,
angle \langle \, oldsymbol{p} \, |$$

Compositeness and "elementariness"

Eigenstates

$$H_{\text{free}} | B_0 \rangle = \nu_0 | B_0 \rangle, \quad H_{\text{free}} | \mathbf{p} \rangle = \frac{p^2}{2\mu} | \mathbf{p} \rangle \quad \text{free (discrete + continuum)}$$
$$(H_{\text{free}} + H_{\text{int}}) | B \rangle = -B | B \rangle \qquad \qquad \text{full (bound state)}$$

- normalization of |B> + completeness relation

$$\langle B \, | \, B \,
angle = 1, \quad 1 = | \, B_0 \,
angle \langle B_0 \, | + \int rac{d oldsymbol{p}}{(2\pi)^3} | \, oldsymbol{p} \,
angle \langle oldsymbol{p} \, |$$

- projections onto bare states

$$1 = Z + X, \quad Z \equiv |\langle B_0 | B \rangle|^2, \quad X \equiv \int \frac{d\mathbf{p}}{(2\pi)^3} |\langle \mathbf{p} | B \rangle|^2$$

"elementariness" compositeness

Z, X: real and nonnegative —> interpreted as probability

Weak binding relation

ΨΦ scattering amplitude (exact result)

Weak binding relation

ΨΦ scattering amplitude (exact result)

Compositeness X < -v(E), G(E)

T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015)

 $X = \{1 + G^2(-B)v'(-B)[G'(-B)]^{-1}\}^{-1}$

Weak binding relation

ΨΦ scattering amplitude (exact result)

Compositeness X <-- v(E), G(E)

T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015)

$$X = \{1 + G^2(-B)v'(-B)[G'(-B)]^{-1}\}^{-1}$$

 $1/R=(2\mu B)^{1/2}$ expansion: leading term <— X

$$a_0 = -f(E=0) = R\left\{\frac{2X}{1+X} + O\left(\frac{R_{typ}}{R}\right)\right\}$$
 renormalization dependent

renormalization independent

If $R \gg R_{typ}$, correction terms neglected: X <- (B, a₀)

Weak-binding relation: unstable state

Introduction of decay channel

Introduce decay channel

$$H_{\text{free}}' = \int d\boldsymbol{r} \left[\frac{1}{2M'} \nabla \psi'^{\dagger} \cdot \nabla \psi' - \nu_{\psi} \psi'^{\dagger} \psi' + \frac{1}{2m'} \nabla \phi'^{\dagger} \cdot \nabla \phi' - \nu_{\phi} \phi'^{\dagger} \phi' \right],$$

$$H_{\text{int}}' = \int d\boldsymbol{r} \left[g_0' \left(B_0^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} B_0 \right) + v_0' \psi'^{\dagger} \phi'^{\dagger} \phi' \psi' + v_0^{\dagger} (\psi^{\dagger} \phi^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} \phi \psi) \right]$$

 B_0

V

Weak-binding relation: unstable state

Introduction of decay channel

Introduce decay channel

$$\begin{aligned} H_{\rm free}' &= \int d\boldsymbol{r} \left[\frac{1}{2M'} \nabla \psi'^{\dagger} \cdot \nabla \psi' - \nu_{\psi} \psi'^{\dagger} \psi' + \frac{1}{2m'} \nabla \phi'^{\dagger} \cdot \nabla \phi' - \nu_{\phi} \phi'^{\dagger} \phi' \right], \\ H_{\rm int}' &= \int d\boldsymbol{r} \left[g_0' \left(B_0^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} B_0 \right) + v_0' \psi'^{\dagger} \phi'^{\dagger} \phi' \psi' + v_0^t (\psi^{\dagger} \phi^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} \phi \psi) \right] \end{aligned}$$

Quasi-bound state: complex eigenvalue

$$H = H_{\rm free} + H'_{\rm free} + H_{\rm int} + H'_{\rm int}$$

$$H|QB\rangle = E_{QB}|QB\rangle, \quad E_{QB} \in \mathbb{C}$$

Weak-binding relation: unstable state

Introduction of decay channel

Introduce decay channel

$$H_{\text{free}}' = \int d\boldsymbol{r} \left[\frac{1}{2M'} \nabla \psi'^{\dagger} \cdot \nabla \psi' - \nu_{\psi} \psi'^{\dagger} \psi' + \frac{1}{2m'} \nabla \phi'^{\dagger} \cdot \nabla \phi' - \nu_{\phi} \phi'^{\dagger} \phi' \right],$$
$$H_{\text{int}}' = \int d\boldsymbol{r} \left[g_0' \left(B_0^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} B_0 \right) + v_0' \psi'^{\dagger} \phi'^{\dagger} \phi' \psi' + v_0^{\dagger} (\psi^{\dagger} \phi^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} \phi \psi) \right],$$

Quasi-bound state: complex eigenvalue

$$H = H_{\text{free}} + H'_{\text{free}} + H_{\text{int}} + H'_{\text{int}}$$

$$H|QB\rangle = E_{QB}|QB\rangle, \quad E_{QB} \in \mathbb{C}$$

Generalized relation: correction term <- threshold difference

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}} \in \mathbb{C}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu}}$$

<u>Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016)</u> c.f. V. Baru, *et al.*, Phys. Lett. B586, 53 (2004),...

If $|R| \gg (R_{typ}, I)$ correction terms neglected: X <- (E_{QB}, a₀)

Generalized weak binding relation X <-- (E_{QB}, a₀) $a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left| \frac{R_{\text{typ}}}{R} \right| \right) + \mathcal{O}\left(\left| \frac{l}{R} \right|^3 \right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu}}$

- $\Lambda(1405)$ (higher) pole position and \overline{KN} scattering length

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012), ...

- Generalized weak binding relation X <-- (E_{QB}, a₀) $a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu}}$
 - $\Lambda(1405)$ (higher) pole position and \overline{KN} scattering length Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012), ...
 - $E_{QB} = -10 26i$ MeV —> $|R| \sim 2 \text{ fm}$ —> small correction term $\left|\frac{R_{typ}}{R}\right| \lesssim 0.12, \quad \left|\frac{l}{R}\right|^3 \lesssim 0.16$ (rho exchange, $\pi\Sigma$ threshold)

- Generalized weak binding relation X <-- (E_{QB}, a₀) $a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left| \frac{R_{\text{typ}}}{R} \right| \right) + \mathcal{O}\left(\left| \frac{l}{R} \right|^3 \right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu}}$
 - $\Lambda(1405)$ (higher) pole position and \overline{KN} scattering length Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012), ...
 - $E_{QB} = -10 26i$ MeV —> $|R| \sim 2 \text{ fm}$ —> small correction term

 $\left|\frac{R_{\text{typ}}}{R}\right| \lesssim 0.12, \quad \left|\frac{l}{R}\right|^3 \lesssim 0.16$ (rho exchange, $\pi\Sigma$ threshold)

	Ref.	E_{QB} (MeV)	a_0 (fm)	$X_{ar{K}N}$	$ ilde{X}_{ar{K}N}$	U	
+	[45]	-10 - i26	1.39 - i0.85	1.2 + i0.1	1.0	0.5	$\tilde{X} - \frac{1 - Z + X }{2}$
	[46]	-4-i8	1.81 - i0.92	0.6 + i0.1	0.6	0.0	A = 2
systematic	[47]	-13 - i20	1.30 - i0.85	0.9 - i0.2	0.9	0.1	
error	[48]	2 - i 10	1.21 - i1.47	0.6 + i0.0	0.6	0.0	U = Z + X - 1
•	[48]	-3-i12	1.52 - i 1.85	1.0 + i0.5	0.8	0.6	

$\Lambda(1405)$ is \overline{KN} composite <-- observables

Summary

Summary

Compositeness of near-threshold bound state can be determined only by observables. S. Weinberg, Phys. Rev. 137, B672 (1965) Weak binding relation can be generalized to unstable states with effective field theory.

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu}}$$

Precise determination of the pole position and scattering length shows that $\Lambda(1405)$ is dominated by KN composite component.

Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016), arXiv:1607.01899[hep-ph]