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- Weak binding relation: observables -> compositeness
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a0: scattering length, re: effective range
R = (2"B) -1/2: radius of wave function
Rtyp: length scale of interaction
X: probability of finding composite component

Compositeness of s-wave weakly bound state (R ≫ Rtyp)
S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

Weak binding relation for stable states
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Introduction

Note: applicable only for stable states

- deuteron is NN composite (a0 ~ R ≫ re) —> X ~ 1
- internal structure from observable
- no nuclear force potential / wavefunction of deuteron
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Low-energy scattering with near-threshold bound state

Effective field theory

D.B. Kaplan, Nucl. Phys. B494, 471 (1997)
Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016)

- Nonrelativistic EFT with contact interaction
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Eigenstates

Compositeness and “elementariness”
Weak-binding relation: stable bound state

(H free + H int)|B i = �B |B i

Hfree|B0 i = ! 0|B0 i, Hfree| p i = p2

2µ
| p i free (discrete + continuum)

full (bound state)
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Eigenstates

Compositeness and “elementariness”

- normalization of |B> + completeness relation
hB |B i = 1 , 1 = |B0 ihB0 | +

!
dp

(2! )3 | p ihp |
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hB |B i = 1 , 1 = |B0 ihB0 | +

!
dp

(2! )3 | p ihp |

Weak-binding relation: stable bound state

(H free + H int)|B i = �B |B i

Z, X: real and nonnegative —> interpreted as probability

“elementariness” compositeness

- projections onto bare states
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$% scattering amplitude (exact result)

Weak binding relation

f(E) = � µ
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T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015)
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If R ≫ Rtyp, correction terms neglected: X <— (B, a0) 
renormalization independent

1/R=(2"B) 1/2 expansion: leading term <— X
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Introduce decay channel

Introduction of decay channel
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If |R| ≫ (Rtyp, l) correction terms neglected: X <— (EQB, a0)

Generalized relation: correction term <— threshold difference

Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016)
c.f. V. Baru, et al., Phys. Lett. B586, 53 (2004),…
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- #(1405) (higher) pole position and KN̅ scattering length
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Generalized weak binding relation X <— (EQB, a0)

Application
Application: #(1405)

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012), …
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ratio |re/a 0|. As discussed in Ref. [22], when the elementary
component is large, the effective rangere increases. The ratio
behaves as|re/a 0| = 0,1.5,! for X = 1,0.5,0, respectively.
Thus, the ratio should be small when the quasibound state
is dominated by the composite structure. This criterion is
essentially the same with the pole counting argument [42,43],
as discussed in Refs. [18,22,37]. We however note that this
type of analysis gives only a qualitative statement.

V. OTHER APPROACHES FOR COMPOSITENESS

There have been several studies on the compositeness
of hadron resonances [18Ð26]. In the pioneering study of
Refs. [18,19], the compositeness is expressed by the integra-
tion of the spectral density. In more recent works [20,21,24Ð
26], the compositeness is given by the product of the residue
of the amplitude and the derivative of loop function, which is
essentially equivalent to Eq. (11). In the case of bound states,
the weak-binding formula (1) is derived from this expression in
Ref. [25]. The use of EFT in the context of the compositeness
can be found in Ref. [23].

Our main result (21) is a direct generalization of the formula
(1) of Ref. [17]. We show that the EFT description can be used
not only for the description of the scattering amplitude, but
also for the deÞnition of the compositeness. In addition, the
decay channels are explicitly introduced in EFT to describe
the unstable eigenstates. In this way, the compositeness of the
unstable state is expressed in terms of the observable quantities
(a0 andEQB ) in the weak binding limit.

VI. APPLICATIONS TO EXOTIC HADRONS

We have shown that the compositenessX of the quasibound
state can be model-independently evaluated by Eq. (21) when
the correction terms are small and the eigenenergyEQB and the
scattering lengtha0 are given. Now we apply this framework
for the structure of near-threshold exotic hadrons. We utilize
empirical determinations ofEQB anda0 by several existing
data analyses. For a given set ofEQB anda0, we estimate the
correction terms and the uncertainty of the interpretationU.
Different input values ofEQB anda0 induce the systematic
uncertainty of the results, which is rooted in the precision of
the empirical determination.

The!(1405) resonance is a negative parity excited baryon
which lies close to theøKN threshold and decays into theπ#
channel. The threshold parameters of!(1405) have recently
been determined by the detailed studies of the experimental
data around theøKN threshold with the chiral effective theories
[44Ð48] in which the eigenenergies are found in the region
|R| ! 1.5 fm. The correction terms are found to be small,
|Rtyp/R | " 0.17 and|l/R |3 " 0.14, where theøKN interaction
range is estimated by theρ meson exchange. From the central
values ofEQB and a0 in these analyses, we determine the
øKN compositeness as summarized in TableI.3 We Þnd that

3The scattering lengths of Refs. [45,47] are obtained from the
isospin averaged amplitude. Others are evaluated at theK " p
threshold bya0 = (aK " p + a øK 0n)/ 2.

TABLE I. Properties and results for!(1405). Shown are the
eigenenergyEQB , øKN (I = 0) scattering lengtha0, the øKN com-
positenessX øKN and ÷X øKN , uncertainty of the interpretationU, and
the ratio of the effective range to the scattering length|re/a 0|. The
scattering length is deÞned asa0 = " f (E = 0).

Ref. EQB (MeV) a0 (fm) X øKN
÷X øKN U |re/a 0|

[45] " 10" i 26 1.39" i 0.85 1.2 + i 0.1 1.0 0.5 0.2
[46] " 4 " i 8 1.81" i 0.92 0.6 + i 0.1 0.6 0.0 0.7
[47] " 13" i 20 1.30" i 0.85 0.9 " i 0.2 0.9 0.1 0.2
[48] 2 " i 10 1.21" i 1.47 0.6 + i 0.0 0.6 0.0 0.7
[48] " 3 " i 12 1.52" i 1.85 1.0 + i 0.5 0.8 0.6 0.4

÷X is close to unity in all cases, indicating theøKN composite
structure of!(1405). Although some results are associated
with U # 0.6, the ratio|re/a 0| < 1.5 is consistent with the
øKN composite dominance.

Near the øKK threshold, there are two scalar mesons,
a0(980) and f 0(980) with the isospinI = 1 and I = 0,
respectively. The decay channel ofa0(980) [f 0(980)] is πη
(ππ ). As summarized in Ref. [49], recent experimental
data around theøKK threshold has been analyzed by Flatte
parametrization [50Ð60], from which EQB and a0 can be
determined. Except for Ref. [50], the obtained eigenenergies
satisfy |R| ! 1.5 fm. EstimatingRtyp by the ρ exchange,
we Þnd|Rtyp/R | " 0.17 and|l/R |3 " 0.04 for both mesons
(with Ref. [50], we obtain |Rtyp/R | # 0.25 and |l/R |3 #
0.13). The evaluatedøKK compositeness are summarized in
TableII (TableIII ) for a0(980) [f 0(980)], where we Þnd that
the uncertaintyU is small for all cases. The results ofa0(980)
show that÷X is small and|re/a 0| is much larger than 1.5, except
for Ref. [53]. Given the large uncertainty of the parameters
in Ref. [53] (see Ref. [49]), we conclude that the structure of
a0(980) is dominated by the non-øKK component. On the other
hand, the results off 0(980) are scattered and not conclusive,
as a consequence of the uncertainties of the Flatte parameters.
We emphasize that the true values of the Flatte parameters
must be unique. The large deviation of the results in TableIII
originates in the large uncertainty of the determination of the
Flatte parameters in Refs. [55Ð60]. The small values ofU in
TableIII indicates that, if the values of the Flatte parameters are
determined unambiguously, then the complex compositeness
of f 0(980) can be interpreted with very little uncertainty.

TABLE II. Properties and results fora0(980). Shown are the
eigenenergyEQB , øKK (I = 1) scattering lengtha0, the øKK com-
positenessX øKK and ÷X øKK , uncertainty of the interpretationU, and
the ratio of the effective range to the scattering length|re/a 0|.

Ref. EQB (MeV) a0 (fm) X øKK
÷X øKK U |re/a 0|

[50] 31 " i 70 " 0.03" i 0.53 0.2 " i 0.2 0.3 0.1 4.8
[51] 3 " i 25 0.17" i 0.77 0.2 " i 0.2 0.2 0.1 6.5
[52] 9 " i 36 0.05" i 0.63 0.2 " i 0.2 0.2 0.1 7.2
[53] 14 " i 5 " 0.13" i 2.19 0.8 " i 0.4 0.7 0.3 0.5
[54] 15 " i 29 " 0.13" i 0.52 0.1 " i 0.2 0.1 0.1 13

035203-4

#(1405) is KN̅ composite <— observables

÷X =
1� |Z| + |X |

2

U = |Z|+ |X|� 1



9

Compositeness of near-threshold bound state 
can be determined only by observables.

Weak binding relation can be generalized to 
unstable states with effective field theory.

Precise determination of the pole position and 
scattering length shows that #(1405) is 
dominated by KN̅ composite component.

Summary

N
K ̅

Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016), arXiv:1607.01899[hep-ph]

Summary

S. Weinberg, Phys. Rev. 137, B672 (1965)
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