Antibaryon interactions with the nuclear medium

Jaroslava Hrtánková

Nuclear Physics Institute, Řež, Czech Republic

INPC, Adelaide, September 11 - 16, 2016

Introduction

- study of \overline{B} (\overline{p} , $\overline{\Lambda}$, $\overline{\Sigma}$, $\overline{\Xi}$) bound states in selected nuclei:
 - behavior of \overline{B} in the nuclear medium including its absorption
 - core polarization effect due to $ar{B}$
- testing models of (anti)hadron-hadron interactions
- knowledge of \bar{B} -nucleus interaction for future experiments (PANDA@FAIR)

Model

RMF approach

- Nucleons Dirac fields interacting via the exchange of meson fields
- Dirac equation for nucleons and antibaryon

$$S = g_{\sigma j}\sigma, \quad V_j = g_{\omega j}\omega_0 + g_{\rho j}\rho_0\tau_3 + e_jrac{1+ au_3}{2}A_0 \;,$$

• Klein-Gordon equations for meson fields

$$(-\triangle + m_{\sigma}^{2})\sigma = -g_{\sigma N}\rho_{S} - g_{\sigma\bar{B}}\rho_{S\bar{E}}$$
$$(-\triangle + m_{\omega}^{2})\omega_{0} = g_{\omega N}\rho_{V} + g_{\omega\bar{B}}\rho_{V\bar{B}}$$
$$(-\triangle + m_{\rho}^{2})\rho_{0} = g_{\rho N}\rho_{I} + g_{\rho\bar{B}}\rho_{I\bar{B}}$$
$$-\triangle A_{0} = e\rho_{p} + e_{\bar{B}}\rho_{\bar{B}}.$$

Baryon-nucleus interaction

- Nucleon-meson couplings obtained by fitting nuclear matter and finite nuclei properties
- Hyperon-meson coupling constants:
 - for ω and ρ field obtained from SU(6) symmetries,
 - for σ field obtained from fits to experimental data (Λ hypernuclei, Σ atoms, Ξ production in (K^+, K^-) reactions)

$$\begin{array}{ll} g_{\sigma\Lambda}=0.621g_{\sigma N}, & g_{\omega\Lambda}=2/3g_{\omega N}, & g_{\rho\Lambda}=0 \ , \\ g_{\sigma\Sigma}=0.5g_{\sigma N}, & g_{\omega\Sigma}=2/3g_{\omega N}, & g_{\rho\Sigma}=2/3g_{\rho N} \ , \\ g_{\sigma\Xi}=0.299g_{\sigma N}, & g_{\omega\Xi}=1/3g_{\omega N}, & g_{\rho\Xi}=g_{\rho N} \end{array}$$

\bar{B} -nucleus interaction

• $BN
ightarrow \overline{B}N$ interaction – G-parity transformation $\hat{G} = \hat{C} e^{i\pi l_1}$

$$g_{\sigma\bar{B}} = g_{\sigma B}, \quad g_{\omega\bar{B}} = -g_{\omega B}, \quad g_{\rho\bar{B}} = g_{\rho B}$$

- G-parity valid for the long and medium range $\bar{B}N$ potential \rightarrow 750 MeV deep \bar{p} potential in the nucleus
- Nuclear medium + short range interaction possible deviations from the G-parity
- Antiprotonic atoms and \bar{p} scattering off nuclei at low energies $\rightarrow \text{ReV}_{\bar{p}} \sim 100 - 300 \text{ MeV}$ deep
- Reduced \bar{B} coupling constants

$$g_{\sigma \bar{B}} = \xi \, g_{\sigma B}, \quad g_{\omega \bar{B}} = -\xi \, g_{\omega B}, \quad g_{\rho \bar{B}} = \xi \, g_{\rho B} \; ,$$

where parameter $\xi = 0.2 - 0.3$

Antibaryon potential

Fig.1: The *B*-nucleus (left) and \overline{B} -nucleus (right) potentials in ¹⁶O.

Antibaryon spectrum

Fig.2: The A dependence of \bar{B} 1s binding energies, calculated dynamically in the TM model for $\xi = 0.2$.

\bar{p} absorption

Fig.3: The phase space suppression factor f_s as a function of the center-of-mass energy \sqrt{s} .

Energy available for annihilation

- CMS frame $ightarrow \sqrt{s} = m_{ar{p}} + m_N B_{ar{p}} B_N ~(M)$
- \bar{p} absorption in a nucleus $\rightarrow \vec{p}_N + \vec{p}_{\bar{p}} \neq 0$ (A. Cieplý, E. Friedman, A. Gal, D. Gazda, J. Mareš, PLB 702, 402 (2011))

$$\begin{split} \sqrt{s} &= E_{th} \left(1 - \frac{2(B_{\bar{p}} + B_{Nav})}{E_{th}} + \frac{(B_{\bar{p}} + B_{Nav})^2}{E_{th}^2} - \frac{1}{E_{th}} T_{\bar{p}} - \frac{1}{E_{th}} T_{Nav} \right)^{1/2}, \quad (\mathsf{J}) \\ &\text{where } T_j = -\frac{\hbar^2}{2m_j^*} \triangle \text{ and } m_j^* = m_j - S_j, \ j = N, \bar{p} \end{split}$$

1s \bar{p} energies and widths in nuclei

Fig.4: Binding energies (left panel) and widths (right panel) of $1s \ \bar{p}$ -nuclear states in selected nuclei, calculated dynamically using the TM1 model for different \sqrt{s} .

Paris $\bar{N}N$ potential

- Microscopic NN Paris potential constrained by scattering and antiproton atom data
 (B. El-Bennich, M. Lacombe, B. Loiseau, S. Wycech, PRC 79 (2009) 054001.)
- Recently used to describe the p
 -atom data and low energy p
 scattering
 off nuclei
 - (E. Friedman, A. Gal, B. Loiseau, S. Wycech, NPA 934 (2015) 101)
- S-wave \bar{p} -nucleus optical potential in a 't ρ ' form

$$2E_{\bar{p}}V_{\rm opt} = -4\pi \frac{\sqrt{s}}{m_N} \left(F_0 \frac{1}{2}\rho_p + F_1 \left(\frac{1}{2}\rho_p + \rho_n\right)\right)$$

In-medium Paris S-wave amplitudes

 In-medium amplitudes F₀ and F₁ obtained from free-space amplitudes by multiple scattering approach (WRW) (T. Wass, M. Rho, W. Weise, NPA 617 (1997) 449)

$$F_1 = \frac{f_{\bar{p}n}(\delta\sqrt{s})}{1 + \frac{1}{4}\xi_k \frac{\sqrt{s}}{m_N} f_{\bar{p}n}(\delta\sqrt{s})\rho}, F_0 = \frac{\left[2f_{\bar{p}p}(\delta\sqrt{s}) - f_{\bar{p}n}(\delta\sqrt{s})\right]}{1 + \frac{1}{4}\xi_k \frac{\sqrt{s}}{m_N}\left[2f_{\bar{p}p}(\delta\sqrt{s}) - f_{\bar{p}n}(\delta\sqrt{s})\right]\rho},$$

where $\delta\sqrt{s} = \sqrt{s} - E_{\text{th}}$, $\xi_k = \frac{9\pi}{p_f^2} 4 \int_0^\infty \frac{dt}{t} \exp(iqt) j_1^2(t)$ and $q = \frac{1}{p_f} \sqrt{E_p^2 - m_p^2}$

In-medium Paris S-wave amplitudes

Fig.5: Energy dependence of the Paris 09 $\bar{p}N$ S-wave amplitudes: Pauli blocked amplitude for $\rho_0 = 0.17 \text{ fm}^{-3}$ (solid lines) compared with free-space amplitude (dotted lines).

1s \bar{p} energies and widths

Fig.6: Binding energies (left panel) and widths (right panel) of $1s \bar{p}$ -nuclear states in selected nuclei, calculated dynamically for $\sqrt{s} = J$ using the Paris $\bar{N}N$ S-wave potential (red) and phenomenological approach within the NL-SH model (black).

\bar{p} spectrum in ¹⁶O

Fig.7: 1s and 1p binding energies (lines) and widths (boxes) of \bar{p} in ¹⁶O calculated dynamically within the TM2 model for $\sqrt{s} = J$ with phenomenological \bar{p} optical potential (left) and S-wave Paris potential (right).

Conclusions

- Antibaryons deeply bound in the nuclear medium within the RMF + G-parity approach
- \bar{p} absorption in a nucleus \bar{p} widths are reduced due to significant contribution from $T_{\bar{p}}$ and T_N to $\Gamma_{\bar{p}}$, but still remain large for potentials consistent with \bar{p} -atom data
- \bar{p} -nucleus quasibound states calculated with the Paris $\bar{N}N$ potential
 - S-wave potential yields smaller 1s \bar{p} energies and larger \bar{p} widths then the RMF approach
 - the P-wave interaction to be included