Decay Constants and SU(3) Symmetry Breaking in *B*-mesons with Quenched Relativistic *b*-quarks

Sophie Hollitt Ross Young and James Zanotti INPC 2016, Tuesday 13th September

Why B-mesons?

- B-meson decays provide access to multiple CKM matrix elements
- The CKM matrix governs quark mixing and CP violations
- Deviations from unitarity indicate BSM physics.
- Evaluate CKM matrix elements by combining experimental results with lattice calculations.

$$\label{eq:From B0-B0-bound} \ensuremath{\mathsf{From B0-B0}}\xspace{-1.5mu} \ensuremath{\mathsf{B0}}\xspace{-1.5mu} \e$$

Why B-mesons?

- Semi-leptonic decays of B-mesons are used to calculate elements $|V_{qb}|$.
- Discrepancy between |V_{ub}| calculated from inclusive and exclusive decay channels, greater understanding of SM QCD flavour-changing processes required to reduce error size or search for new physics.

Why B-mesons?

- Oscillations between B^0 and $\overline{B^0}$ used to calculate elements $|V_{tq}|$
- Calculation requires input from experiment and from lattice QCD.

$$\Delta M_q = \frac{G_F^2 m_w^2}{6\pi^2} \eta_B S_0 M_{B_q} f_{B_q}^2 B_{B_q} V_{tq}^* V_{tb} |^2$$

Outline

- Measuring B-mesons on the lattice:
 - Selecting light quarks
 - Simulating b-quarks and tuning B mesons
- Symmetry breaking of the decay constant f_B
- Upcoming work

Selecting light quarks

- QCDSF collaboration
 2+1 flavour formalism
- Focus on symmetry breaking with constant average mass

 $\overline{m} = m_u + m_d + m_s$

Select m to match the physical value of m

b-quarks on the lattice

- b-quarks are heavy and "fall through" the lattice without modification.
- Use an anisotropic, clover-improved action and then tune free parameters to physical quantities

Aoki, Y et al (2012). "Nonperturbative tuning of an improved relativistic heavy-quark action with application to bottom spectroscopy." *Physical Review D*, *86*(11), 116003. doi:10.1103/PhysRevD.86.116003

- 1. For every light quark, generate one "central" *b*-quark and six other *b*-quarks by varying our three free parameters.
- 2. Calculate a "flavour singlet" B meson, $B_X = (2/3) B_l + (1/3) B_s$ for each of our seven *b*-quarks.
- 3. Compare the calculated B_{χ} mesons to the physical B_{χ} meson to tune the free parameters.

Decay constant f_{Ba}

 $\Delta M_q = \frac{G_F^2 m_w^2}{6\pi^2} \eta_B S_0 M_{B_q} f_{B_q}^2 B_{B_q} |V_{tq}^* V_{tb}|^2$

 Calculate f_B for each B meson, and use the tuning to interpolate the "best" B-meson and thus "best" f_B

Decay constant f_{Bq}: SU(3) breaking

• Compare f_{Bl} and f_{Bs} to f_{Bx} to cancel out some sources of error.

What's next from here?

Symmetry breaking of f_B and f_{Bs}

 Continued investigation of f_B using multiple lattice spacings and lattice volumes to quantify systematic errors and discretisation effects.

Upcoming work: form factors

- Calculation of form factors for the B-meson
- Calculation of semi-leptonic weak decay of the B-meson to assist with $|V_{bq}|$ at Belle II.

Summary

- Lattice calculations of B-meson decays lead to CKM matrix elements and possible BSM physics.
- We generate B-mesons with
 - light and strange quarks chosen to have a constant average mass matching the physical mass
 - b-quarks tuned to match physical B-meson properties
- We presented early results for f_B and f_{Bs}, with a full study of systematic error upcoming.

2013 World Averages for f_B

Nf = 2+1: fB = (190.5±4.2) MeV, fBs = (227.7±4.5) MeV

Nf = 2+1: fBs/fB = 1.202 ± 0.022