The Strange and Light Quark Magnetic Moments of the $\wedge(1405)$ Antikaon-nucleon Molecule

Jonathan Hall[†]

Derek Leinweber, Anthony Thomas, Waseem Kamleh, Benjamin Menadue, Benjamin Owen, Ross Young, Zhan-Wei Liu, Jia-Jun Wu

† http://drjonathanmmhallfrsa.wordpress.com

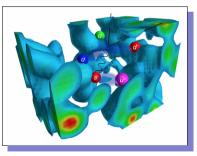


Image: courtesy of Derek B. Leinweber

The Strange and Light Quark Magnetic Moments of the A(1405) Antikaon-nucleon Molecule, INPC 2016

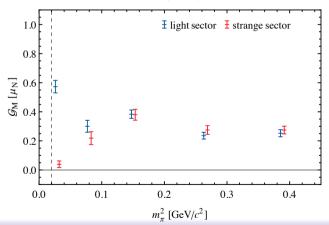
Overview

- The strange-quark sector of the $\Lambda(1405)$
 - Lattice QCD results
 - Hamiltonian effective field theory (HEFT)
- The light-quark sector of the $\Lambda(1405)$
 - Loop contributions to magnetic moment
 - The graded symmetry approach
- Summary of the molecular nature of the $\Lambda(1405)$

The strange-quark sector of the $\wedge(1405)$

The Strange and Light Quark Magnetic Moments of the $\Lambda(1405)$ Antikaon-nucleon Molecule, INPC 2016

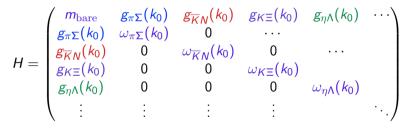
The \(1405)


- The $\Lambda(1405)$ is an odd-parity hyperon, but is lighter than any other excited spin-1/2 baryon.
- Its unexpected position in the spectrum renders its structure mysterious. Descriptions range from
 - pure meson-baryon scattering, e.g. arXiv:1301.5741,
 - pure three-quark state (*uds*), e.g. <u>arXiv:1109.6716</u>,
 - or a combination of both, e.g. <u>arXiv:1411.3402</u>.
- Until recently, there has not been a convincing resolution to the structure of the $\Lambda(1405)$ that describes both scattering experiments and lattice QCD well.

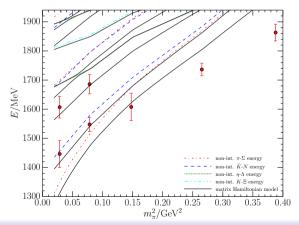
The \wedge (1405) in lattice QCD

- It has recently emerged from lattice QCD that a component of the $\Lambda(1405)$ must be a bare three-quark state near the physical point, which becomes the dominant contribution at large pion mass <u>arXiv:1512.05831</u>, <u>arXiv:1607.05856</u>.
- Lattice QCD shows that the strange magnetic moment vanishes near the physical pion mass.
- This suggests there is a strong $\overline{K}N$ bound-state contribution to the $\Lambda(1405)$, since the kaon is spin 0 and in an S wave, and cannot contribute to the moment!
- Hamiltonian effective field theory (HEFT) analysis of the interacting states, as a function of pion mass, arrives at the same conclusion.

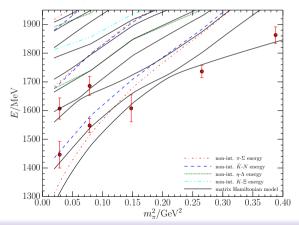
Lattice QCD results


• The strange magnetic form factor of the $\Lambda(1405)$ vanishes near the physical pion mass.

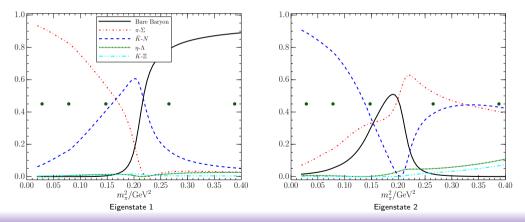
The Strange and Light Quark Magnetic Moments of the A(1405) Antikaon-nucleon Molecule, INPC 2016


- The matrix Hamiltonian model was developed for analysing scattering states on the lattice as an alternative to Lüscher's method.
- The free parameters of the model (related to the low-energy coefficients of the chiral expansion) can be fit directly to lattice results → more stable estimation of renormalised masses, decay widths, etc.
- The matrix Hamiltonian model is more straightforwardly generalisable to multi-channel interactions,
- It has the ability to provide information on interpreting the output spectrum of states at any quark-mass/volume.

• The finite-volume Hamiltonian includes the interactions between a bare $\Lambda(1405)$ mass, $m_{\text{bare}} = m_0 + \alpha_0 m_{\pi}^2$, and the leading octet states: $\pi \Sigma$, $\overline{K}N$, $\overline{K}\Xi$, $\eta \Lambda$.



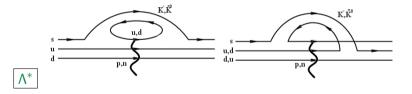
- The non-interacting energies are: $\omega_{MB}(k_n) = \sum_{i=M}^{B} \sqrt{k_n^2 + m_i^2}$.
- The zero cross-terms can be replaced with the appropriate Weinberg-Tomozawa scattering amplitudes.


• The absence of a bare $\Lambda(1405)$ state means large pion mass results are hard to reproduce.

• The addition of a bare $\Lambda(1405)$ state means all pion mass results can be reproduced.

• For the lightest pion mass, the $\Lambda(1405)$ is dominated by a bound $\overline{K}N$ state.

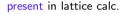
The Strange and Light Quark Magnetic Moments of the $\Lambda(1405)$ Antikaon-nucleon Molecule, INPC 2016

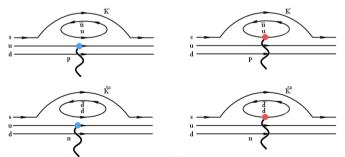

The light-quark sector of the $\wedge(1405)$

The Strange and Light Quark Magnetic Moments of the $\Lambda(1405)$ Antikaon-nucleon Molecule, INPC 2016

12 / 22

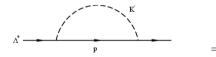
The light-quark sector of the $\wedge(1405)$

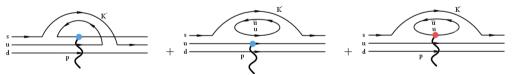

- If the $\Lambda(1405)$ is dominated by \overline{KN} loops near the physical pion mass, we expect its magnetic moment, μ , to be strongly related to that of the nucleon.
- We perform a lattice QCD calculation. But we need to account for missing disconnected loops.


• We consider first a flavour-singlet Λ^* , but we will consider the octet component of the $\Lambda(1405)$ as well (see <u>arXiv:1109.6716</u>).

Loop contributions to magnetic moment

For the disconnected loop contributions in both Λ^{*} → K⁻p and Λ^{*} → K⁰n, valence couplings are present, but sea couplings are not.

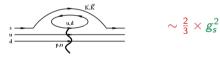


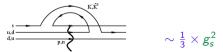

not present in lattice calc.

Loop contributions to magnetic moment

• Therefore, we want the partially quenched coupling, for example, for the process $\Lambda^*\to K^-p$, where

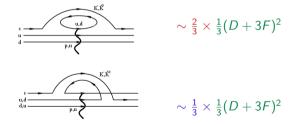
• We need to cancel off the last graph, which represents half the disconnected *u*-sector. But how much of the coupling is in this graph?


- One can generalise the baryon field from effective field theory, to a three-index tensor, B_{ijk} , which can intuitively isolate the required quark flavour lines.
- The disconnected loops are handled by ghost quark counterparts $(\tilde{u}, \tilde{d}, \tilde{s})$ which are added to extract the quenched couplings.
- We extend this formalism to consider the singlet-octet and singlet-singlet components as well <u>arXiv:1509.08226</u>. The original octet-octet formalism can be found in <u>arXiv:9605034</u>.
- We create an anti-symmetrized field that contains the singlet


$$\mathcal{B}_{ijk}^{S} = \frac{1}{3\sqrt{2}} \left(+ \epsilon_{ijk'} B_{kk'} + \epsilon_{jkk'} B_{ik'} + \epsilon_{kik'} B_{jk'} - \epsilon_{jjk'} B_{kk'} - \epsilon_{kjk'} B_{ik'} - \epsilon_{ikk'} B_{jk'} \right)$$

• The interaction Lagrangian takes the following form

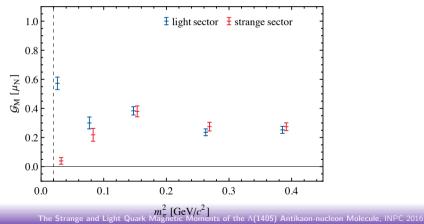
$$\mathcal{L}_{S} = 2\sqrt{2} g_{s} \left(-1\right)^{(\eta_{i}+\eta_{j})(\eta_{k}+\eta_{k'})} \overline{\mathcal{B}}_{kji}^{S*} \gamma_{\mu} A^{\mu}_{kk'} \mathcal{B}_{ijk'}$$


• $\Lambda^* \to \tilde{K}^- \tilde{\Lambda}^+_{p,\tilde{u}}$ and $\Lambda^* \to \overline{\tilde{K}}^0 \tilde{\Lambda}^0_{n,\tilde{d}}$ correspond to the disconnected loop contributions, each with a strength of $\frac{2}{3}g_s^2$.

• In the case of the octet component of the $\Lambda(1405)$, we have the ghost processes:

 $\Lambda \to \tilde{K}^- \tilde{\Lambda}^+_{\rho, \tilde{\nu}}$ and $\Lambda \to \overline{\tilde{K}}^0 \tilde{\Lambda}^0_{n, \tilde{d}}$. We find that

• The ratio between the disconnected and total octet component is the same factor of $\frac{2}{3}$!


- The weight of the disconnected part, in this case, is independent of representation.
- Therefore, the light-quark sector magnetic moments of the $\Lambda(1405)$ on the lattice are expected to be:

$$\langle \Lambda^* | \mu_u | \Lambda^* \rangle^{\text{conn}} = \frac{1}{2} (2u_p + u_n - \frac{2}{3}u_p)$$

 $\langle \Lambda^* | \mu_d | \Lambda^* \rangle^{\text{conn}} = \frac{1}{2} (2d_n + d_p - \frac{2}{3}d_n)$

- Checking, we find that: $\frac{1}{2}(2u_{
 ho}+u_{
 ho})=1.03(2)\,\mu_{
 m N},$
- $\frac{1}{2}(2u_p + u_n \frac{2}{3}u_p) = 0.63(2)\mu_N$,
- Whereas the $\Lambda(1405)$ magnetic moment on the lattice is: $\mu_{\Lambda*}^{conn} = 0.58(5) \,\mu_N$. Success!

19 / 22

• The light quark contribution to the $\Lambda(1405)$ observed in lattice QCD has its origin in the nucleon of the $\overline{K}N$ molecule.

- We examined magnetic moment in the strange and light quark sectors of the $\Lambda(1405)$.
- We found that both lattice QCD and Hamiltonian effective field theory agree that the $\Lambda(1405)$ is dominated by a bound \overline{KN} state near the physical point.
- It is clear that a bare three-quark state is vital for describing the behaviour of lattice QCD at large pion masses.
- We extended the graded symmetry approach to include flavour-singlet interactions, which describe a significant portion of the $\Lambda(1405)$.
- Both octet and singlet components of the $\Lambda(1405)$ receive a disconnected contribution $\frac{2}{3}$ the size of the total contribution. This makes the light sector lattice result consistent with the \overline{KN} picture.

Acknowledgments

I would like to thank Derek Leinweber, Tony Thomas, Waseem Kamleh, Ross Young, Ben Menadue, Ben Owen. I would also like to thank Phiala Shanahan, Zhan-Wei Liu

and Jia-Jun Wu for discussions during the course of this research.