

First results from **Phase II** of the **GERDA** experiment

Konstantin Gusev for the GERDA collaboration

11-16 September 2016 – Adelaide – Australia

0vββ-decay

GERDA

 $(for < m_{BB} > = 10 meV)$

2000

0νββ

- ! violates lepton number \leftrightarrow forbidden in the SM
- only if v has Majorana mass component or other new $\Delta L = 2$ operators exist

0.003

0.002

0.001

n

0

2νββ

500

1000

1500

- ✓ No preferred isotope from Nuclear Physics (G*M)
- ✓ Target mass and detector efficiency as high as possible
- ✓ "Zero-background" regime if possible
- $\checkmark~$ Resolution remains important due to $2\nu\beta\beta$ and background reduction

GERDA:

INPC 2016

GERDA: location

- bare HPGe detectors in LAr
- water and LAr shield against external radiation
- deep underground Hall A of LNGS, Italy (3500 m.w.e)

GERDA Phase I & Phase II HPGe detectors enriched in ⁷⁶Ge (86%)

Coaxials:

- from HdM and IGEX
- reprocessed by Canberra
- total mass ~ 18 kg
- average FWHM 4.8 keV at $Q_{\beta\beta}$

BEGes:

- novel Ge detectors
- produced by Canberra
- total mass ~ 20 kg
- better **PSD** and **FWHM** (3.2 keV at $Q_{\beta\beta}$ in Phase I)

- ✓ 8 enriched coaxials
 ✓ 1 natural coaxial
 - 5 Phase II BEGes

Total exposure:

21.6 kg yr (11.2011 - 05.2013)

Background after PSD: 10⁻² counts / (keV kg yr)

Limit on the half-life: $T_{1/2}^{0\nu} > 2.1 \ 10^{25} \ \mathrm{yr} \ (90\% \ \mathrm{CL})$

Phase I & Phase II

- Naked Ge detectors in LAr first time ever
- Blind analysis first time in the field
- Pulse shape discrimination (PSD)

GERDA:

Phase II upgrade

Phase II:

Add new BEGe detectors (20 kg) BI ≈ 0.001 cts / (keV kg yr) Sensitivity after 100 kg yr

<u>Phase I:</u> Use refurbished HdM & IGEX (18 kg) BI \approx 0.01 cts / (keV kg yr) Sensitivity after 20 kg yr

 $T_{1/2}^{0\nu} > 2.1 \times 10^{25} \text{ yr} (90\% \text{ CL})$ (PRL 111 (2013) 122503)

GERDA:

Phase II upgrade

- ! Background had to be reduced by one order of magnitude vs Phase I
- New in Phase II:
 - ✓ lock
 - ✓ holders
 - ✓ HV and signal cables
 - ✓ more BEGe detectors PSD more effective!
 - $\checkmark\,$ read out of liquid argon light for veto!!!

Phase II upgrade: LAr veto

✓ works well

✓ suppression factors depend on isotope, location and detector configuration

Phase II upgrade : Final integration (Dec 2015)

All 40 channels working!!!

Konstantin Gusev

Phase II: Performance

Phase II started on December 20, 2015

energy [keV]

Phase II: Performance

- ✓ Total enriched coaxial exposure: 5.0 kg yr
- ✓ Total enriched BEGe exposure: 5.8 kg yr
- ✓ Blinding window $Q_{\beta\beta} \pm 25$ keV
- ✓ K⁴⁰/K⁴² Compton continuum strongly suppressed by LAr-veto
- ✓ PSD works

PSD for **coaxial**:

Οvββ acceptance: (76±7)% (preliminary)

PSD for **BEGe**: **0**νββ acceptance: (**87.3**±0.9)%

counts / 30 keV

First results

Phase II:

GERDA 16-07

GERDA 16-07

GERDA 16-07

anti-coincidence cut (AC) + muon veto (MV)

energy [keV]

1 500 1500 1000 2000

Phase II: **First results**

Phase II first results: Unblinding

Phase II first results: New limit

data set		exposure [kg∙yr]	signal eff	background [cts/(keV·kg·yr)]	resolution [FWHM]
Phase I	golden	17.9	0.57 (3)	$\begin{array}{c} 11 \pm 2 \cdot 10^{-3} \\ 30 \pm 10 \cdot 10^{-3} \\ 5^{+4}_{-3} \cdot 10^{-3} \\ 5^{+4}_{-3} \cdot 10^{-3} \end{array}$	4.3 (1)
Phase I	silver	1.3	0.57 (3)		4.3 (1)
Phase I	BEGe	2.4	0.66 (2)		2.7 (2)
Phase I	extra	1.9	0.58 (4)		4.2 (2)
Phase II	coaxial	5.0	0.51 (7)	$\begin{array}{r} 35^{+21}_{-15} \cdot 10^{-4} \\ 7^{+11}_{-5} \cdot 10^{-4} \end{array}$	4.0 (2)
Phase II	BEGe	5.8	0.60 (2)		3.0 (2)

✓ Phase I & Phase II data were used to set the new limit

✓ Phase I resolution improved with new energy reconstruction [EPJ C75 (2015)]

✓ "Phase I extra" has been unblinded together with Phase II data

✓ Phase II background goal reached!!!

Phase II first results: New limit

	Profile likelihood 2-side test stat.	Bayesian flat prior on cts
$0\nu\beta\beta$ cts best fit value (cts)	0	0
$T_{1/2}^{0 uetaeta}$ lower limit (× 10^{25} yr)	> 5.2 (90% CL)	> 3.5 (90% CL)
$T_{1/2}^{0 uetaeta}$ median sensitivity (× 10^{25} yr)	4.0 (90% CL)	3.0 (90% CL)

Konstantin Gusev

GERDA Phase II:

Status

- Phase II data taking successfully started in December 2015!
- 7 strings of HPGe detectors deployed:
 - 37 detectors enriched in ⁷⁶Ge (35.8 kg)
 - 3 natural detectors (7.6 kg)
- all 40 detectors and LAr veto work well
- first Phase II data released
 - \checkmark BI for BEGe **10**⁻³ counts/(keV kg yr)
 - best BI ever achieved!
- New $T_{1/2}^{0\nu\beta\beta}$ limit from Phase I & Phase II data:
 - $T_{1/2}^{0\nu} > 4 \times 10^{25} \text{yr} (90\% \text{ CL})$ ✓ Sensitivity:

(similar to KamLAND-Zen)

Limit:

$$T_{1/2}^{0\nu} > 5.2 \times 10^{25} \text{yr} (90\% \text{ CL})$$

GERDA Phase II: Status

GERDA Phase II is the first background free double beta experiment

Additional slides

Phase II:

detector array

- 7 strings of detectors
- 30 BEGe detectors
- 10 semi-coaxial (Phase I) detectors: 7 enriched + 3 non-enriched

- Dense packing of detectors allows better anti-coincidence cut
- ✓ Each string enclosed by transparent nylon mini-shroud against ⁴²K-ions:

Suppression factor > 1000 for ⁴²K bkg has been demonstrated in LArGe test facility (nylon mini-shroud + PSD + LAr veto)

Konstantin Gusev

INPC 2016