Thermonuclear Bursts from Millisecond Pulsars: Matching Observations with Models

Adelle Goodwin and Duncan Galloway

School of Physics & Astronomy, Monash University also Monash Centre for Astrophysics (MoCA)

INPC Conference 2016

Background image source: NASA/Goddard Space Flight Center/Dana Berry

Accretion Powered Millisecond Pulsars

- Neutron stars in a binary system
- Accreting matter from a low mass companion star.
- Weak magnetic fields (~10⁸ G)
- Typically transient X-ray sources
- Exhibit coherent X-ray pulsations
- Exhibit type I thermonuclear bursts periodically.

Thermonuclear Bursts from Millisecond Pulsars: Matching Observations with Models

Diagram of an accreting millisecond pulsar. Source:http://www.redorbit.com/education/reference_library/universe/xray_bia ries/257 /index.html

Type I Thermonuclear X-Ray Bursts

- Periodic, rapid increases in the X-Ray luminosity of an accreting neutron star
- Energies of the order of 10³⁹ ergs
- Caused by unstable ignition of accreted Hydrogen/Helium on the surface of the neutron star

Source: Galloway et al (2008)

SAX J1808.4 – 3658: A Pure He Burster

Frequent burster (~ every 2.5 years)

 Exhibits pure helium thermonuclear bursts: very uncommon in catalogue of known bursters (~5% of sources in MINBAR)

Evolution of the atmosphere during a burst for (a) mixed H/He ignition and (b) pure He ignition Source: Cumming & Bildsten (2000) **Pure helium bursts:**

- Produced by unstable helium burning in a layer of pure helium underlying a stable hydrogen burning shell
- Recurrence time ~1 day, which gives sufficient time for the hot CNO cycle to exhaust accreted hydrogen, causing ignition in a pure helium environment
- Shorter burst duration (~10s) for pure He than for mixed H/He bursts(~30s)

Models of Thermonuclear X-Ray Bursts

Settle Model

- Thermonuclear ignition model
- Developed by Andrew Cumming (see Cumming & Bildsten, 2000)
- Temperature profile of H and He is calculated given an accretion rate and the accumulating layer is allowed to build up until the condition for a thermal runaway is satisfied.
- H assumed to burn via hot CNO cycle
- Thickness of accumulating layer determines recurrence time of bursts
- Burst energy calculated by assuming complete burning of the H/He layer
- Accreted material assumed to cover the whole surface of the neutron star.

TABLE 2 PLANE PARALLEL IGNITION CONDITIONS ^a								
$\dot{m}/\dot{m}_{\rm Edd}{}^{\rm b}$	Z _{CNO}	Т (10 ⁸ К)	$(10^8 \mathrm{gcm^{-2}})$	Х	Y	$\rho (10^6 {\rm g cm^{-3}})$	<i>y/ṁ</i> ° (h)	$\Delta z(90\%)^d$ (m)
			Pure	He Igni	tion			
0.01	0.005	1.49 1.35	5.40 12.9	0.0	0.995 0.99	2.28 4.14	170 407	4.2 5.1
0.015	0.02	1.22	34.0 3.67	0.0	0.98	8.01 1.75	1073 77	6.9 3.8
0.02	0.02	1.41 1.74	8.50 1.92	0.0 0.0	0.98 0.99	3.11	179 30	4.4 3.8
0.03	0.02 0.02	1.57 1.83	3.62 1.56	0.0 0.0	0.98 0.98	1.74 0.97	57 16	3.5 3.6
			Mixed	H/He Ig	nition			
0.015	0.005	1.73	2.05	0.01	0.99	1.16	43	4.2
0.02	0.005	1.78	2.18	0.15	0.85	0.94	34 25	4.5 4.9
0.1	0.01	2.05	2.70	0.14	0.85	0.87	18 8.5	4.2 5.6
	0.01	2.13	2.04	0.50	0.49	0.71	6.4 4.8	5.1 4.7
0.3	0.005 0.01 0.02	2.24 2.33 2.44	2.62 2.14 1.70	0.67 0.64 0.59	0.33 0.35 0.39	0.76 0.66 0.57	2.8 2.3 1.8	5.8 5.5 5.2

^aConditions at the base of the accumulated column at ignition. We take $M = 1.4M_{\odot}$, R = 10 km, and $g = GM/R^2 = 1.9 \times 10^{14}$ cm s⁻². The ignition pressure is $P = gy = 1.9y_8 \times 10^{22}$ erg cm⁻³ and the accumulated mass over the whole surface is $\Delta M = 4\pi R^2 y = 1.3y_8 \times 10^{21}$ g. We take the flux from deeper in the star to be $F_b = 150$ keV per nucleon.

 ${}^{\rm b}\dot{m}_{\rm Edd} = 8.8 \times 10^4 \,{\rm g}\,{\rm cm}^{-2}\,{\rm s}^{-1}$, equivalent to a global rate $\dot{M}_{\rm Edd} = 1.7 \times 10^{-8}\,M_{\odot}\,{\rm yr}^{-1}$.

^cThe time to accumulate the unstable column

^dThe height above the base which contains 90% of the mass.

Source: Cumming & Bildsten (2000)

- Inputs: Accretion rate, base flux, Hydrogen fraction, metallicity
- **Outputs**: Recurrence time, fluence, alpha, average H fraction... and other things

Our Method

- Match Rossi-X-Ray Timing Explorer observations with a numerical ignition model
- Determine best-fit parameters of the system
 - Distance/inclination
 - Accretion rate
 - Hydrogen fraction/metallicity
- Markov Chain Monte Carlo (MCMC) approach

We use a Python implementation of MCMC called "emcee" see http://dan.iel.fm/emcee/current/ or Foreman-Mackey et al (2013) for details

- Based off Galloway & Cumming (2006) analysis, but with improved:
 - Parameter space exploration
 - Updated telescope calibrations
 - Correct treatment of inclination

observed burst properties for SAX J1808.4-3658

Thermonuclear Bursts from Millisecond Pulsars: Matching Observations with Models

Adelle Goodwin

Matching Observations with Models using MCMC

MCMC: Markov Chain Monte Carlo

Gaussian Likelihood

$$L(x_i | \theta, \text{model}) = \frac{1}{\sigma_i f_i \sqrt{2\pi}} \exp\left[\frac{-(x_i - model)^2}{2f_i \sigma_i^2}\right]$$

 Overall likelihood is multiplication of individual likelihoods for each parameter

Parameters of interest

Non-Observables:

- Hydrogen fraction
- Accretion Rate
- Distance/inclination
- Metallicity
- Base flux
- Mass of Neutron Star
- Radius of Neutron Star
- Beaming Fraction
- "Missed bursts"

Observables:

- Fluence
- Recurrence time
- Alpha (ratio of nuclear burning energy to gravitational energy)

MCMC output

Example chains output from MCMC

Example parameter distributions, showing confidence regions

Thermonuclear Bursts from Millisecond Pulsars: Matching Observations with Models

Adelle Goodwin

Results

• MCMC chain output and triangle plots

X (H fraction) vs Z (metallicity) confidence regions

Example chains output from MCMC

Thermonuclear Bursts from Millisecond Pulsars: Matching Observations with Models

Adelle Goodwin

SAX J1808.4-3568: Results

4.0

3.5

• We predict 3 extra bursts that were not observed

SAX J1808.4-3568: Results

• <u>Distance/inclination:</u>

3.48 – 3.53 kpc

(compared to lower limit of 3.4 kpc from Galloway & Cumming (2006))

- <u>Hydrogen fraction:</u> 0.40 ± 0.01
- <u>Metallicity:</u> 0.0093 ± 0.0004

Xo

6000

5000

4000

3000

2000

1000

• <u>Burst Recurrence time (hours):</u>

Thermonuclear Bursts from Millisecond Pulsars: Matching Observations with Models

6000

5000

4000

3000

2000

1000

Summary

- We have developed a method to match observations of accretion powered millisecond pulsars with models to determine non-observable parameters of the system
- This enables us to constrain parameters such as fuel composition and distance, that aids in understanding the mechanisms behind thermonuclear X-Ray bursts, as well as testing current models
- We are developing a catalogue of standard cases to be used as a reference for modelling studies

Any Questions? Email me: adelle.goodwin@monash.edu