Recent results on light pseudoscalar mesons

DIPARTIMENTO DI FISICA

INPC 2016 September 12, 2016 – Adelaide

Outline

- Introduction
- Masses of light quarks from $\eta \rightarrow 3 \pi$ decays
- Transition Form Factors (space-like and time-like)
- Dark Photon searches involving pseudoscalar mesons
- Conclusions

Introduction

- Light pseudoscalar mesons offer a unique possibility to test symmetries and symmetry breaking mechanisms in QCD at low energy
- Strong and e.m. interactions of the pseudoscalars are generally described by Chiral Perturbation Theory (χPT) and its extensions
 - ⇒ Octet of quasi-Goldstone bosons, π, η, K mesons, from spontaneous breaking of chiral symmetry + the singlet η'(958)
- Large samples of pseudoscalar mesons are available from experiments at e⁺e⁻ colliders (KLOE@DAΦNE, BESIII@BEPCII, SND and CMD-3 at VEPP2000, BaBar and Belle at the B-Factories), from fixed target (WASA@COSY) and also from photoproduction experiments (CLAS@JLAB, A2@MAMI), ...
 - ⇒ precision measurements can be done

$\eta \rightarrow 3\pi$ and light quark masses

- Strong decay, isospin violating, e.m. contribution negligible (Sutherland theorem) $\mathcal{L}=-\frac{1}{2}(m_u-m_d)(\bar{u}u-\bar{d}d)$
- The quark masses are free parameters of the theory, can be determined from experimental inputs

$$oldsymbol{\Gamma}(\eta o oldsymbol{3}\pi) \propto |\mathbf{A}(\mathbf{s},\mathbf{t},\mathbf{u})|^{oldsymbol{2}} \propto \mathbf{Q}^{-oldsymbol{4}}$$

$$\mathbf{Q^2} = rac{\mathbf{m_s^2} - \mathbf{\hat{m}^2}}{\mathbf{m_d^2} - \mathbf{m_u^2}} \ [\hat{\mathbf{m}} = rac{1}{2}(\mathbf{m_u} + \mathbf{m_d})]$$

(Dashen theorem: e.m. contribution to K^0/K^{\pm} mass difference equal to the π^0/π^{\pm} one $\Rightarrow Q = 24.3$ is expected)

• Slow convergence of the χ PT series $\Gamma_{LO}(\eta \rightarrow 3\pi) = 66 \text{ eV}$ $\Gamma_{NLO}(\eta \rightarrow 3\pi) = 160 - 210 \text{ eV}$ $\Gamma_{NNLO}(\eta \rightarrow 3\pi) = 230 - 270 \text{ eV}$

 \Rightarrow Large $\pi\pi$ final state interactions

$$\Gamma(\eta \to \pi^+ \pi^- \pi^0) = (\mathbf{300} \pm \mathbf{12}) \text{ eV}$$

$$\Gamma(\eta
ightarrow 3\pi^0) = (428 \pm 17) \,\,\mathrm{eV}$$
 (from PDG)

$$\eta \rightarrow \pi^+ \pi^- \pi^0$$
 Dalitz Plot

• Taylor expansion around the center

 $X = \sqrt{3} \frac{\mathbf{T}_{+} - \mathbf{T}_{-}}{\mathbf{Q}_{\eta}} \qquad \mathbf{Y} = 3 \frac{\mathbf{T}_{0}}{\mathbf{Q}_{\eta}} - 1$ $\mathbf{Q}_{\eta} = \mathbf{M}_{\eta} - 2\mathbf{M}_{\pi\pm} - \mathbf{M}_{\pi0}$ $\Rightarrow |\mathbf{A}(\mathbf{X}, \mathbf{Y})|^{2} = \mathbf{N}(1 + a\mathbf{Y} + b\mathbf{Y}^{2} + c\mathbf{X} + d\mathbf{X}^{2} + e\mathbf{X}\mathbf{Y} + f\mathbf{Y}^{3} + g\mathbf{X}^{2}\mathbf{Y} + \dots)$

- Odd powers of X are C-violating \Rightarrow *c* and *e* are expected to vanish
- KLOE@DA Φ NE: $e^+e^- \rightarrow \phi(1020) \rightarrow \eta\gamma$ with $\eta \rightarrow \pi^+\pi^-\pi^0 \Rightarrow \pi^+\pi^-+ 3\gamma$ L = 1.6 fb⁻¹ \Rightarrow 4.7 × 10⁶ events

$\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz Plot

• BESIII@BEPCII: $e^+e^- \rightarrow J/\psi \rightarrow \eta\gamma$ with $\eta \rightarrow \pi^+\pi^-\pi^0 \Rightarrow \pi^+\pi^-+ 3\gamma$ final state L = ~ 80000 events from a sample of $1.31 \times 10^9 J/\psi$ produced [PRD92(2015)012014]

• WASA@COSY: pd \rightarrow ³He η , with $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ @ 1 GeV, 1.74×10⁵ η candidates (pp \rightarrow pp η analysis in progress) WASA@COSY

6

 $\eta \rightarrow \pi^+ \pi^- \pi^0$

	a	b	d	f	g
KLOE '08	-1.090 ± 0.020	0.124 ± 0.012	0.057 ± 0.017	0.14 ± 0.02	
WASA '14	-1.144 ± 0.018	0.219 ± 0.051	0.086 ± 0.023	0.115 ± 0.037	
BESIII '15	-1.128 ± 0.017	0.153 ± 0.017	0.085 ± 0.018	0.173 ± 0.035	
KLOE '16	-1.095 ± 0.004	0.145 ± 0.006	0.081 ± 0.007	0.141 ± 0.011	-0.044 ± 0.016
ΝΝLΟ χΡΤ	-1.271 ± 0.075	0.394 ± 0.102	0.055 ± 0.057	0.025 ± 0.160	
NREFT	-1.213 ± 0.014	0.308 ± 0.023	0.050 ± 0.003	0.083 ± 0.019	-0.039 ± 0.002
JPAC	-1.117 ± 0.035	0.188 ± 0.014	0.079 ± 0.003	0.090 ± 0.003	-0.063 ± 0.012
χ PT + K-T eq.	-1.147 – -1.154	0.181 - 0.202	0.107 - 0.116	0.088 - 0.90	

- \Rightarrow $c = 0.002 \pm 0.003 \pm 0.001; e = -0.006 \pm 0.007 \pm 0.005$ (KLOE '08)
- Experiments agree within the uncertainties
- KLOE '16 sensitive also to g parameter
- χPT is not able to reproduce all the DP parameters
- Better agreement with models that combine χ PT and dispersion relations to treat $\pi\pi$ final state interactions ______ Preliminary

 $\eta \rightarrow \pi^+ \pi^- \pi^0$

	a	b	d	$\int f$	g	
KLOE '08	-1.090 ± 0.020	0.124 ± 0.012	0.057 ± 0.017	0.14 ± 0.02		
WASA '14	-1.144 ± 0.018	0.219 ± 0.051	0.086 ± 0.023	0.115 ± 0.037		
BESIII '15	-1.128 ± 0.017	0.153 ± 0.017	0.085 ± 0.018	0.173 ± 0.035		
KLOE '16	-1.095 ± 0.004	0.145 ± 0.006	0.081 ± 0.007	0.141 ± 0.011	-0.044 ± 0.016	
ΝΝLΟ χΡΤ	-1.271 ± 0.075	0.394 ± 0.102	$0.055 \pm 0.05'$	Bijnens-Ghorba	ni, JHEP11(2007	7)030
NREFT	-1.213 ± 0.014	0.308 ± 0.023	0.050 ± 0.00	Schneider et al.,	arXiv:1010.3946	5
JPAC	-1.117 ± 0.035	0.188 ± 0.014	0.079 ± 0.000	Guo et al., arXiv	:1608.01447	
χ PT + K-T eq.	-1.1471.154	0.181 - 0.202	0.107 - 0.116	Albaladejo-Mou	ssallam PoS(CD	15)057

- \Rightarrow $c = 0.002 \pm 0.003 \pm 0.001; e = -0.006 \pm 0.007 \pm 0.005$ (KLOE '08)
- Experiments agree within the uncertainties
- KLOE '16 sensitive also to g parameter
- χPT is not able to reproduce all the DP parameters
- Better agreement with models that combine χ PT and dispersion relations to treat $\pi\pi$ final state interactions ______ Preliminary

 $\eta \rightarrow \pi^0 \pi^0 \pi^0$

• Amplitude symmetric for the exchange of the pions

$$\mathbf{Z} = \mathbf{X^2} + \mathbf{Y^2} = rac{2}{3}\sum_{\mathbf{i}=1}^3 \left(rac{3\mathbf{T_i}}{\mathbf{Q}_\eta} - 1
ight)^2 \qquad \qquad \mathbf{Q}_\eta = \mathbf{M}_\eta - 3\mathbf{M}_{\pi\mathbf{0}}$$

 $\Rightarrow |A(Z)|^2 = N(1 + 2\alpha Z + ...)$

$$(\alpha = 0 \text{ in } \chi PT (\alpha) LO)$$

[PLB694(2010)16]

• KLOE@DA Φ NE ('10): $e^+e^- \rightarrow \phi \rightarrow \eta\gamma$ with $\eta \rightarrow \pi^0 \pi^0 \pi^0$, 7 prompt γ final state L = 420 pb⁻¹ $\Rightarrow \sim 5 \times 10^5$ events

 $\eta \rightarrow \pi^0 \pi^0 \pi^0$

• BESIII@BEPCII: $e^+e^- \rightarrow J/\psi \rightarrow \eta\gamma$ with $\eta \rightarrow \pi^0 \pi^0 \pi^0$, ~ 34000 events

Light quark masses

Transition Form Factors and $(g-2)_{\mu}$

Transition Form Factors describe the coupling to photons and are important for the understanding of the nature of mesons

- $a_{\mu}^{exp} a_{\mu}^{SM} = (31.25 \pm 8.54) \times 10^{-10} \Rightarrow \sim 3.7 \sigma$ discrepancy $[a_{\mu} = (g_{\mu} 2)/2]$ $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had} \rightarrow main contribution to the uncert. on <math>a_{\mu}^{SM}$ (future g-2 expts at FNAL and J-PARC goal: reduce the uncert. on a_{μ}^{exp} from 0.54 to 0.14 ppm)
- The main contribution to a_μ^{had} is the Hadronic Vacuum Polarization, but the second one is the Hadronic Light-by-Light scattering
 (a_μ^{LbL}=(11.6±3.9)×10⁻¹⁰[Jegerlehner-Nyffeler P.Rep.477(2009)])

HLbL

The HLbL scattering is dominated by the exchange of single pseudoscalar mesons (in particular single π^0) \Rightarrow TFFs, but off-shell mesons

Space-like FF in yy physics

• At e^+e^- colliders can be measured by means of $\gamma\gamma$ processes

 $\sigma \propto \alpha^2 (\ln \sqrt{s})^2$

- No tag: quasi-real photons, $q_i^2 \approx 0$ \Rightarrow radiative width of the meson $\Gamma(P \rightarrow \gamma \gamma)$
- Single tag: one scattered lepton detected \Rightarrow F(Q²,0)
- Double tag: detect both leptons ⇒ F(Q₁²,Q₂²) but cross-sections very small
- Special tagging devices: very small angle detectors for scattered e^{\pm} to tag events with photons with low virtuality

- No tag: KLOE, L = 240 pb⁻¹ (*a*) $\sqrt{s} = 1$ GeV
- Off-peak data to reduce bckg from $\phi(1020)$ decays

 $\Rightarrow \Gamma(\eta o \gamma \gamma) = (520 \pm 20 \pm 13) \ \mathrm{eV}$ [JHEP01(2013)119]

+ CELLO + CLEO

- BaBar

Belle

Q≤ [GeV≤

0.05

- Low Q² (≤ 1 GeV²) region almost unexplored
 ⇒important to constrain TFF parametrization
- BESIII is analyzing the 2.9 fb⁻¹ collected at the ψ(3770) peak ⇒ F(Q²,0) at 0.3 < Q² < 3 GeV² Study of systematics in progress

$F_{\pi 0\gamma\gamma^*}(Q^2)$ with taggers

 KLOE-2: 2 tagging devices: Low Energy Tagger (LET): crystal calorimeters, to detect scattered e⁺/e⁻ of E ≈ 150 - 350 MeV

High Energy Tagger (HET): scintillator hodoscopes placed after the first bending dipoles of DAΦNE, 420 < E < 495 MeV

- Both e^+ and e^- in the HET $Q_1^2, Q_2^2 \sim 0 \implies \Gamma(\pi^0 \rightarrow \gamma \gamma)$ (PrimEx@JLAB $\Gamma(\pi^0 \rightarrow \gamma \gamma) = (7.82 \pm 0.14 \pm 0.17) \text{ eV}$ Theory: $\Gamma(\pi^0 \rightarrow \gamma \gamma) = (8.09 \pm 0.11) \text{ eV}$)

- One lepton in the HET and the other in the main detector \Rightarrow F(Q²,0) at Q²<0.1 GeV²

BESIII will install PbWO₄ calorimeters at very small angles

Time-like FFs from Dalitz decays

• $P \rightarrow V\ell^+\ell^-$ or $V \rightarrow P\ell^+\ell^-$; $q^2 =$ invariant mass of the lepton pair

 $\phi \rightarrow \eta e^+ e^- \mathrm{TFF}$

 $\phi \rightarrow \pi^0 e^+ e^- \mathrm{TFF}$

Dark Photon searches

- Several astrophysical anomalies (AMS02, PAMELA, FERMI, INTEGRAL, DAMA, ...) can be explained by the presence of a new U(1)_D gauge particle, the so-called Dark Photon (U, A', γ', ...) [Arkani-Hamed at al., PRD79(2009)015014]
- This massive dark photon mixes with the ordinary photon

• AMS-02

e* energy [GeV]

B - field

This new force carrier could also explain the $(g-2)_{\mu}$ discrepancy

 $\mathcal{L}_{mix} = -\frac{\varepsilon}{2} \mathbf{F}_{\mu\nu}^{\mathbf{QED}} \mathbf{F}_{\mathbf{Dark}}^{\mu\nu} \qquad \Rightarrow \alpha_{\mathbf{D}} = \varepsilon^{2} \alpha_{\mathbf{em}}$ $(\varepsilon \sim \mathbf{10^{-2}} - \mathbf{10^{-4}})$

[Pospelov,PRD80(2009)095002]

 $e \qquad \gamma^* \qquad U$

P.Gauzzi

۲

Dark Photon searches

 Dalitz decays involving light pseudoscalar mesons can be used to search for Dark Photons, in the hypothesis that the U is the lightest particle of the dark sector, by looking for spikes in the dilepton invariant mass distribution (U→ℓ+ℓ⁻)

Conclusions

- The study of the light pseudoscalar mesons is still alive as research field
- Large samples of pseudoscalar mesons are produced by *e⁺e⁻* colliders, fixed target experiments, photoproduction, ...
- Precision tests of Effective Field Theories (like Chiral Perturbation Theory and its extensions) can be performed
- Essential for the construction of the models to understand new phenomena like exotics, hybrid mesons, ...
- Precision measurements at low energy can also give indications about Physics beyond the Standard Model
- More data available in the future: experiments in data taking (KLOE-2, BESIII), new experiments (JEF)

P.Gauzzi

KLOE-2 Physics Workshop *a* **LNF**

KLOE-2 Workshop on e+e- collision physics at 1 GeV

26-28 October 2016 INFN - Laboratori Nazionali di Frascati Europe/Rome Umazone

https://agenda.infn.it/conferenceDisplay.py?confId=11722

CP and T violation, CPT and QM tests K_s decays, η decays and chiral lagrangians φ decays, light hadron spectroscopy and TFFs γγ physics

Dark force searchesHadronic contribution to (g-2)μLow energy kaon interactions6 - September 1Future machines and new detectors

Spare slides

η′(958)→3π

- BESIII, $e^+e^- \rightarrow J/\psi \rightarrow \eta'\gamma$, combined analysis of charged and neutral channels from a sample of $1.31 \times 10^9 J/\psi$ produced $\Im_{0.6}$ [10] Besuma (b) [+Data
- $\eta' \rightarrow \pi^+ \pi^- \pi^0$: ~ 8000 events
- $\eta' \rightarrow \pi^0 \pi^0 \pi^0$: ~ 2000 events
- Sizeable contribution of P-wave $\eta' \rightarrow \rho^{\pm} \pi^{\mp}$, ρ pole 775.49 *i* (68. 5± 0. 2) MeV
- Evidence of S-wave resonant contribut. (512±15) $-i(188 \pm 12)$ MeV $\Rightarrow f_0(500)$
- $\eta' \rightarrow \pi^0 \pi^0 \pi^0$ Dalitz plot slope $\alpha = -0.640 \pm 0.046 \pm 0.047$ [PRD92(2015)012014]

 $\mathbf{r_0} = \frac{\mathbf{Br}(\eta' \to \pi^0 \pi^0 \pi^0)}{\mathbf{Br}(\eta' \to \eta \pi^0 \pi^0)} = (\mathbf{16.42} \pm \mathbf{1.94}) \times \mathbf{10^{-3}}$

Final state interaction more relevant than for η Dispersive methods under development also for $\,\eta^\prime$

$\eta/\eta' \rightarrow \pi^+\pi^-\gamma$ and the Box Anomaly

- The coupling of the 3 pseudoscalars with the photon is described by the WZW lagrangian ⇒ resonant term (ρ dominated) and a contact term represented y the box diagram.
- The decay widths and the dipion mass spectra are expected to be sensitive to the relative contributions of the two terms
- Recently a parametrization of the decay amplitude to disentangle perturbative and non-perturbative effects has been proposed

 $\frac{d\Gamma}{ds_{\pi\pi}} = |\mathbf{AP}(s_{\pi\pi})\mathbf{F}_{\mathbf{V}}(s_{\pi\pi})|^{2}\Gamma_{\mathbf{0}}(s_{\pi\pi}) \text{ [Stollenwerk et al.PLB707(2012)184]}$ $\mathbf{F}_{\mathbf{V}} = \text{pion FF (well known from experiments and theory)}$ $\Gamma_{\mathbf{0}} = \text{phase space and kinematics}$ $\mathbf{P}(\mathbf{s}_{\pi\pi}) = \mathbf{1} + \alpha \mathbf{s}_{\pi\pi} + \beta \mathbf{s}_{\pi\pi}^{2} + \dots \text{ (perturbative part - process specific)}$ $\mathbf{A}, \alpha, \beta, \dots, \text{ can be related to the parameters of the underlying effective theory}$

 $\eta \rightarrow \pi^+ \pi^- \gamma$

	$\Gamma(\eta \rightarrow \pi + \pi - \gamma) / \Gamma(\eta \rightarrow \pi + \pi - \pi 0)$	α [GeV ⁻²]
Gormley et al. ('70)	0.201 ± 0.006	$1.8 \pm 0.4 (*)$
Layter et al. ('73)	0.209 ± 0.004	$-0.9 \pm 0.1 (*)$
CLEO ('07)	$0.175 \pm 0.007 \pm 0.006$	
WASA ('12)	$0.206 \pm 0.003 \pm 0.008 ('15)$	$1.89 \pm 0.25 \pm 0.59$
KLOE ('13)	$0.1856 \pm 0.0005 \ \pm 0.0028$	$1.32 \ \pm 0.08 \pm 0.10$
(*) Fit of the spectra from Stollenwerk et al., PLB707(2012)184		

- KLOE in agreement with CLEO measurement
- WASA in agreement with the older measurements
 ⇒ 2 3 σ discrepancy

 $\Gamma(\eta \to \pi^+ \pi^- \gamma) = 51.6 - 61.6 \text{ eV} \Rightarrow \text{sizeable effect of the contact term}$ [Benayoun et al., EPJC31(2003)525]

- Stollenwerk et al. parametrization
 - \Rightarrow sensitive only to α term
 - Spectra from older data are inconsistent
 - KLOE and WASA agree within the uncertainties

INPC 2016 - September 12, 2016

 $\eta' \rightarrow \pi^+ \pi^- \gamma$

• BESIII: $e^+e^- \rightarrow J/\psi \rightarrow \eta'\gamma$ with $\eta' \rightarrow \pi^+\pi^-\gamma$; 9 × 10⁶ events found

Different fits:

- 1. $\rho(770) + \omega(782) + \text{Contact Term}$
- 2. $\rho(770) + \omega(782) + \rho(1450)$

[BESIII, PoS(CD15)032]

Both fits are good, the situation is not clear

3. Parametrization from Stollenwerk et al. $\Rightarrow \frac{\alpha = (0.992 \pm 0.039 \pm 0.067) \text{ GeV}^{-2}}{\beta = (-0.523 \pm 0.039 \pm 0.066) \text{ GeV}^{-4}}$

	α [GeV ⁻²]	β [GeV ⁻⁴]
GAMS-200 ('91)	$2.7 \pm 0.1 (*)$	
Crystal Barrel ('93)	1.8 ± 0.5 (*)	
BESIII ('15)	$0.992 \ \pm 0.039 \pm 0.067$	$-0.523 \ \pm 0.039 \pm 0.066$
CLAS ('16)	1.17 ± 0.04	-1.44 ± 0.41
(*) Fit of the spectra from Stollenwerk et al., PLB707(2012)184		

- A recent dispersive approach to the calculation of the HLbL to $(g-2)_{\mu}$, pointed out the relevance also of the two-pion intermediate states and related its contribution to the $\gamma\gamma \rightarrow \pi\pi$ partial waves [Colangelo et al., JHEP1409(2014)091]
- Single tag measurement by Belle of e⁺e⁻→e⁺e⁻π⁰π⁰ for Q² from 3 to 30 GeV² and for 0.5 < W_{γγ} < 2.1 GeV Fit with S, D₀ and D₂ partial waves
- KLOE-2 with the taggers could investigate this process at lower $W_{\gamma\gamma}$ values (also study of $f_0(500) \rightarrow \pi^0 \pi^0$)

$$\gamma^*\gamma^* \rightarrow \pi^0\pi^0$$

- $e^+e^- \rightarrow e^+e^- \pi^0\pi^0$
- $\sigma(500) \rightarrow \pi^0 \pi^0$?
- Previous measurements by Crystal Ball and JADE
- KLOE data (no taggers) L=240 pb⁻¹ @ $\sqrt{s} = 1$ GeV

σ (cosϑ≤0.8) (nb)

Clear excess of events with respect to the known background processes

• Most recent measurement by Belle (no tag) for $M_{\pi\pi} > 0.8 \text{ GeV}$ [PRD75(2007)051101] \Rightarrow measurement of the $f_0(980)$ partial widths No partial wave analysis

TFF slope

Dark B-boson searches

• Leptophobic Dark Force mediator predominantly coupling to quarks (B-boson)

 $\mathcal{L} = \frac{1}{3} \mathbf{g}_{\mathbf{B}} \bar{\mathbf{q}} \gamma^{\mu} \mathbf{q} \mathbf{B}_{\mu} \qquad \qquad \alpha_{\mathbf{B}} = \frac{\mathbf{g}_{\mathbf{B}}^{2}}{4\pi} \lesssim \mathbf{10}^{-5} \times (\mathbf{m}_{\mathbf{B}}/\mathbf{100MeV})$

Dominant decay channel (m_B < 600 MeV): B→π⁰γ
Can be studied in processes like: φ→ηB ⇒ ηπ⁰γ final state (KLOE-2) η→Bγ ⇒ π⁰γγ (KLOE-2, JEF+GlueX)

Mixing $\eta - \eta'$ @KLOE

•
$$\phi \rightarrow \eta' \gamma; \eta' \rightarrow \eta \pi^+ \pi^-; \eta \rightarrow \pi^0 \pi^0 \pi^0$$

 $\eta' \rightarrow \eta \pi^0 \pi^0; \eta \rightarrow \pi^+ \pi^- \pi^0$
• $\phi \rightarrow \eta \gamma; \eta \rightarrow \pi^0 \pi^0 \pi^0$

$$\mathbf{R} = \frac{\mathbf{Br}(\phi \to \eta' \gamma)}{\mathbf{Br}(\phi \to \eta \gamma)} = (4.77 \pm 0.09 \pm 0.19) \times 10^{-3}$$

[systematics dominated by $\delta Br(\eta' \rightarrow \eta \pi \pi) = 3\%$]

 $\Rightarrow Br(\phi \rightarrow \eta' \gamma) = (6.20 \pm 0.11 \pm 0.15) \times 10^{-5}$

• Pseudoscalar mixing angle: $\left(|q\overline{q}\rangle = \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle \right) \right)$ $\eta = \cos\varphi_{\rm P} |q\overline{q}\rangle - \sin\varphi_{\rm P} |s\overline{s}\rangle$ $\eta' = \sin\varphi_{\rm P} |q\overline{q}\rangle + \cos\varphi_{\rm P} |s\overline{s}\rangle$ $R = \cot^{2}\varphi_{\rm P} \left(1 - \frac{m_{\rm s}}{\overline{m}} \cdot \frac{C_{\rm NS}}{C_{\rm S}} \cdot \frac{\tan\varphi_{\rm V}}{\sin 2\varphi_{\rm P}} \right)^{2} \cdot \left(\frac{p_{\eta'}}{p_{\eta}} \right)^{3}$ $\varphi_{\rm P} = (41.4 \pm 0.3 \pm 0.9)^{\circ} \Rightarrow \vartheta_{\rm P} = (-13.3 \pm 0.3 \pm 0.9)^{\circ}$

Final state: $\pi^+\pi^- + 7 \gamma$

L= 427 pb⁻¹ $N_{\eta'\gamma} = 3407 \pm 61 \pm 43$ ev. $N_{\eta\gamma} = 16.7 \times 10^{6}$ ev.

Inv.mass of $\pi^+\pi^-$ + 6 γ out of 7

[PLB648(2007)267]

η' gluonium content

$\eta' = \mathbf{X}_{\eta'} q\overline{q}\rangle + \mathbf{Y}_{\eta'} s\overline{s}\rangle + \mathbf{Z}_{\eta'} 0\rangle$	S New fit: $R = \cot^2 \varphi_P \cos^2 \varphi_P$	$\mathcal{P}_{G}\left(1-\frac{\mathrm{m}_{\mathrm{s}}}{\mathrm{\overline{m}}}\cdot\frac{\mathrm{C}_{\mathrm{NS}}}{\mathrm{C}_{\mathrm{S}}}\cdot\frac{\mathrm{tan}\varphi_{\mathrm{V}}}{\mathrm{sin}2\varphi_{\mathrm{P}}}\right)^{2}\cdot\left(\frac{\mathrm{p}_{\mathrm{\eta}'}}{\mathrm{p}_{\mathrm{\eta}}}\right)^{3}$
$\mathbf{X}_{\mathbf{\eta}'} = \mathbf{\cos}\varphi_{\mathbf{G}}\mathbf{\sin}\varphi_{\mathbf{P}}$ $\mathbf{Y}_{\mathbf{\eta}'} = \mathbf{\cos}\varphi_{\mathbf{G}}\mathbf{\cos}\varphi_{\mathbf{P}}$	$\frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\pi^0 \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \gamma\gamma\gamma)}, \frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\omega \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\eta' \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\eta' \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\eta' \to \gamma\gamma)}, $	$\frac{\Rightarrow \omega \gamma}{\Rightarrow \pi^{0} \gamma}, \frac{\Gamma(\omega \rightarrow \eta \gamma)}{\Gamma(\omega \rightarrow \pi^{0} \gamma)}, PDG08+$
$Z_{\eta'} = \sin \varphi_{G}$ [Rosner PRD27(1983) 1101, Kou PRD63(2001)54027]	$\frac{\Gamma(\rho \to \eta \gamma)}{\Gamma(\omega \to \pi^0 \gamma)}, \frac{\Gamma(\phi \to \eta \gamma)}{\Gamma(\omega \to \pi^0 \gamma)}, \frac{\Gamma(\phi \to \pi^0 \gamma)}{\Gamma(\omega \to \pi^0 \gamma)}$	$\frac{\gamma}{\gamma}, \frac{\Gamma(K^{*+} \to K^{+}\gamma)}{\Gamma(K^{*0} \to K^{0}\gamma)} \int KLOE \qquad \qquad$

	New fit	PLB648
Z_{η} . ²	$\boldsymbol{0.12\pm0.04}$	$\boldsymbol{0.14\pm0.04}$
φ_{P} (deg.)	40.4 ± 0.6	39.7 ± 0.7
C _{NS}	$0.94\pm\!0.03$	0.91 ±0.05
Cs	$0.83\pm\!0.05$	$\textbf{0.89} \pm \textbf{0.07}$
φ_V (deg.)	$\textbf{3.32} \pm \textbf{0.10}$	3.2
m _s /m	$\boldsymbol{1.24\pm0.07}$	$\boldsymbol{1.24\pm0.07}$
χ^2/ndf	4.6/3	1.42 / 2
$P(\chi^2)$	20%	49%

KLOE-2: by measuring the main η' Br's @ 1% \Rightarrow statistical significance of $Z_{\eta'}^2$ will increase to $4 - 5 \sigma$

 $Z_{\eta'}^2$ 0.5 $\Gamma(\phi \rightarrow \eta' \gamma) / \Gamma(\phi \rightarrow \eta \gamma)$ $\Gamma(\phi \rightarrow \eta \gamma) / \Gamma(\omega \rightarrow \pi^0 \gamma)$ 0.45 0.4 $\Gamma(\eta' \rightarrow \gamma \gamma) / \Gamma(\pi^0 \rightarrow \gamma \gamma)$ 0.35 0.3 0.25 $\Gamma(\eta' \rightarrow \omega \gamma) / \Gamma(\omega \rightarrow \pi^0 \gamma)$ 0.2 0.15 $\Gamma(\eta' \rightarrow \rho \gamma)/\Gamma(\omega \rightarrow \pi^0 \gamma)$ 0.1 0.05 ⁰ 30 32 34 36 38 40 42 44 46 48 50 $\varphi_P(^{\circ})$

[JHEP07(2009)105]

Mixing $\eta - \eta'$ (*a*LHCb)

,

Study of the $\eta - \eta'$ mixing from $B^0_{(s)} \rightarrow J/\psi \eta(')$ decays

$$\begin{split} \mathrm{R}_{\eta'} &= \frac{\mathcal{B}(\mathrm{B}^{0} \to \mathrm{J}/\psi \eta')}{\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mathrm{J}/\psi \eta')} = (2.28 \pm 0.65 \,(\mathrm{stat}) \pm 0.10 \,(\mathrm{syst}) \pm 0.13 \,(f_{\mathrm{s}}/f_{\mathrm{d}})) \times 10^{-2}, \\ \mathrm{R}_{\eta} &= \frac{\mathcal{B}(\mathrm{B}^{0} \to \mathrm{J}/\psi \eta)}{\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mathrm{J}/\psi \eta)} = (1.85 \pm 0.61 \,(\mathrm{stat}) \pm 0.09 \,(\mathrm{syst}) \pm 0.11 \,(f_{\mathrm{s}}/f_{\mathrm{d}})) \times 10^{-2}, \\ \mathrm{R}_{\mathrm{s}} &= \frac{\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mathrm{J}/\psi \eta')}{\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mathrm{J}/\psi \eta)} = 0.902 \pm 0.072 \,(\mathrm{stat}) \pm 0.041 \,(\mathrm{syst}) \pm 0.019 \,(\mathcal{B}), \\ \mathrm{R} &= \frac{\mathcal{B}(\mathrm{B}^{0} \to \mathrm{J}/\psi \eta')}{\mathcal{B}(\mathrm{B}^{0} \to \mathrm{J}/\psi \eta)} = 1.111 \pm 0.475 \,(\mathrm{stat}) \pm 0.058 \,(\mathrm{syst}) \pm 0.023 \,(\mathcal{B}), \end{split}$$

With gluonium content

$$\begin{aligned} \frac{\mathbf{R}'}{\mathbf{R}'_{\mathbf{s}}} &= \tan^4 \phi_{\mathbf{P}} \qquad \mathbf{R}' \mathbf{R}'_{\mathbf{s}} = \cos^4 \phi_{\mathbf{G}} \\ \mathbf{R}'_{(\mathbf{s})} &= \mathbf{R}_{(\mathbf{s})} \left(\frac{\Phi^{\eta}_{(\mathbf{s})}}{\Phi^{\eta'}_{(\mathbf{s})}} \right)^3 \\ \phi_{\mathbf{P}} &= (\mathbf{43.5}^{+1.4}_{-\mathbf{2.8}})^{\mathbf{o}} \qquad \phi_{\mathbf{G}} = (\mathbf{0.0} \pm \mathbf{24.6})^{\mathbf{o}} \end{aligned}$$

[JHEP1501(2015)024]

$$\mathbf{R}_{\eta'} = \left(\frac{\Phi^{\eta'}}{\Phi_{s}^{\eta'}}\right)^{3} \frac{\tan^{2}\theta_{C}}{2} \tan^{2}\phi_{P}$$
$$\mathbf{R}_{\eta} = \left(\frac{\Phi^{\eta}}{2}\right)^{3} \frac{\tan^{2}\theta_{C}}{2} \cot^{2}\phi_{P}$$

 $\phi_{\mathbf{P}} = (\mathbf{46.3} \pm \mathbf{2.3})^{\mathbf{o}}$

P.Gauzzi

INPC 2016 - September 12, 2

KLOE

Magnetic field: 0.52 T

KLOE-2

- KLOE-2 data taking with the upgraded detector started on November 2014
- DAΦNE peak luminosity: 2.2×10³² cm⁻² s⁻¹
- Integrated luminosity ~ 3 fb⁻¹ (July 2016)
- KLOE-2 target \geq 5 fb⁻¹ by the end of 2017

KLOE-2 upgrade

- Tagging system: LET + HET (see later)
 Inner Tracker : 4 layers of cylindrical triple GEM
 - improve acceptance for low momentum tracks
 - better vertex recontruction
- QCALT: W + scint. tiles + SiPM
 - quadrupole coverage for K_L decays
- CCALT : LYSO + APD
 - increase acceptance for γ's from the IP (21° to 10°)

γγ physics @ KLOE-2

- KLOE-2 is running at the φ peak

γγ process

channel	Total Production (L = 10 fb ⁻¹)
$e^+e^- \rightarrow e^+e^-\pi^0$	4 × 10 ⁶
${\rm e^+e^-} \! \rightarrow {\rm e^+e^-} \eta$	10 ⁶
$e^+ e^- \rightarrow e^+ e^- \pi^+ \pi^-$	2 × 10 ⁶
$e^+e^- \rightarrow e^+e^-\pi^0\pi^0$	2 × 10 ⁴

decay mode bckg to: esc.particle events $K_{S}(\pi^{0}\pi^{0}) K_{I}$ ~ 109 $\pi^{0}\pi^{0}$ K, $K_{s}(\pi^{+}\pi^{-}) K_{l}$ K, $\sim 2 \times 10^{9}$ $\pi^{+}\pi^{-}$ ~ 109 $\pi^+\pi^-\pi^0$ π^0 ~ 108 $\eta(\gamma\gamma)\gamma$ Y η $\sim 5 \times 10^{8}$ π^0 $\pi^{0}(\gamma\gamma)\gamma$ γ

Additional background from continuum processes

A tagging system is needed to reduce background

P.Gauzzi

Low Energy Tagger

 Weak correlation between E and scattering angle
 ⇒ calorimeters: 20 × 2 LYSO crystals read-out by SiPM, placed at ~ 1 m from the IP σ_E/E < 10% for E > 150 MeV

P.Gauzzi

High Energy Tagger

- First bending dipole of DAΦNE acts as a spectrometer for the scattered e⁺/e⁻
 (420 < E < 495 MeV)
- Strong correlation between E and trajectory
- Scintillator hodoscope + PMTs; pitch: 5 mm placed at ~ 11 m from IP

High Energy Tagger

- Low background (< 10%) evaluated with non colliding beams
- HET is acquired asynchronously w.r.t. the main KLOE detector
- HET signals corresponding to three DAΦNE revolutions are recorded for each KLOE trigger
- Synchronization is performed by using the "Fiducial" signal from DAΦNE

LET system and performance

• 3rd term is fixed, since we have about 5 MeV noise

- \cdot Statistical term higher than expected (20 p.e./MeV \rightarrow less than 1%/ E^{1/2}(GeV))
- Contribution to constant term due to lateral leakage (matrix not fully readout)
- There is an unknown contribution from the beam
- Resolution is better than 10% for E > 150 MeV

Muon g-2

- Well knowk discrepancy between the expt. and the theoretical value of the muon anomaly $[a_{\mu} = (g_{\mu} 2)/2]$
- $a_{\mu}^{exp} = 11659\ 208.9 \pm 6.3 \times 10^{-10}$ BNL-E821 (2006) (future g-2 expts at FNAL and J-PARC goal: reduce the uncert. on a_{μ}^{exp} from 0.54 to 0.14 ppm)

•
$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{Weak} + a_{\mu}^{had}$$

Contribution	in units of 10 ⁻¹⁰		
QED	11658471.895	5 ± 0.008	
Weak	15.4	± 0.2	
HVP(leading order)	692.3	± 4.2	
HVP(higher order)	-9.79	± 0.07	
HLBL	11.6	± 4.0	
Total	11659181.4	± 5.8	

Kinoshita et al.,	PRL 109 (2012) 111808	
Czarnecki et al.,	PRD 67 (2003) 073006 + Erratum	
Davier et al.,	EPJC 17 (2011) 1515 + Erratum	
Hagiwara et al.,	CPC 34 (2010) 728	
Jegerlehner, Nyffler, Phys.Rept. 477 (2009) 1		

$$a_{\mu}^{exp} - a_{\mu}^{SM} = (31.25 \pm 8.54) \times 10^{-10} \Rightarrow \sim 3.7 \sigma$$

INPC 2016 - September 12, 2016

Muon g-2

 Main contribution to the uncertainty ⇒ Hadronic Vacuum Polarization
 Evaluated from the total σ(e⁺e⁻→hadrons) via

Dispersion Relation \Rightarrow accuracy increasing

• Second contribution ⇒ Hadronic Light-by-Light Scattering Will become dominant in the future

Dominated by single pseudoscalar exchange

Depends on TFF parametrization

a

Also pion loop important Dispersion Relations \Rightarrow related to γγ $\rightarrow \pi\pi$ partial waves

BESII

- Main Drift Chamber (MDC) $\sigma(p)/p = 0.5\%$ $\sigma_{dE/dx} = 6.0\%$
- Time-of-flight system (TOF) $\sigma(t) = 90$ ps (barrel) $\sigma(t) = 110$ ps (endcap)
 - $\sigma(t) = 110ps$ (endcap) EMC

•

- 6240 CsI(Tl) crystals $\sigma(E)/E = 2.5\%$
- $\sigma_{Z,\Phi}(E) = 0.5 0.7 \text{ cm}$
- Muon Chambers 8 - 9 layers of RPC p>400 MeV/c $\delta R\Phi = 1.4 \sim 1.7$ cm
- Superconducting Magnet
 1 T magnetic field