

Reconciling observations and models of thermonuclear bursts with nuclear experiments

Duncan Galloway Alexander Heger Nathanael Lampe & Adelle Goodwin Monash University

INPC 2016, Adelaide SA

Thermonuclear X-ray bursts

 Occur in neutron stars accreting from low-mass binary companions; ~100 bursters known, ~10⁴ bursts observed since early 1970s

• Understood since the `80s as resulting from unstable ignition of accreted H/He on the NS surface e.g. Fujimoto et al. 1981, ApJ 247, 267

Past & present X-ray missions

- *RXTE* high sensitivity & fast timing, 1995 Dec– 2012 Jan
- INTEGRAL/JEMX; wide-field, low sensitivity, 2002 onwards

Data from these last three make up the Multi-INstrument Burst ARchive (MINBAR), under assembly at Monash

- *Swift*; wide-field, rapid response to transients, new bursts etc.
- NUSTAR, hard X-ray sensitivity
- ASTROSAT, launched Sep 2015, LAXPC large-area detector + imagers

Diversity of X-ray burst behaviour

- *"Intermediate duration" bursts* in low-accretion rate systems, burning of large pure-He reservoirs e.g. Falanga et al. 2009, A&A 496, 333
- Short recurrence time bursts occur too promptly to reach critical temperature, density Keek et al. 2010, ApJ 718, 292
- *Multi-peaked bursts* perhaps attributable to nuclear waiting points? e.g. Fisker et al. 2004, ApJ 608, L61
- Photospheric radius-expansion bursts reach the (local) Eddington limit; utility as standard candle e.g. Kuulkers et al. 2003, A&A 399, 663
- "Superbursts" with durations of hours, likely powered by carbon Cornelisse et al. 2000, A&A 357, L21

Burst profiles and the burst fuel

Different timescales for hot-CNO cycle and triple- α burning result in a diversity of burst profiles for different fuel mixes

Motivation for burst studies

- Thermonuclear bursts offer fundamental astrophysical information about the host sources – confirm neutron star (rather than black hole), determine distance
- Significant efforts over the last decade in measuring neutron star mass and radius from modelling the X-ray spectra, and hence constraining the equation of state e.g. Özel 2013, arXiv:1210.0916
- As-yet poorly exploited utility in probing nuclear reactions which power the bursts, with possible impact on host parameters e.g. Heger et al. 2007, ApJ 671, L141

Thermonuclear burning

- Accreted fuel is thought to be a mix of H & He, at roughly solar composition (70/28%)
- A subset of sources have evolved companions and likely accrete (almost?) pure He
- H and He burning occur

 independently, via the hot
 CNO cycle & rp-process
 burning, or triple-alpha
- Burning of both species can be stable or unstable, depending on accretion rate

End-point of rp-process burning

 Dominates late-time burning in mixed H/He bursts; terminates in a Sn-Sb-Te cycle

FIG. 1. The time integrated reaction flow above Ga during an x-ray burst and for steady-state burning. Shown are reaction flows of more than 10% (solid line) and of 1%–10% (dashed line) of the reaction flow through the 3α reaction.

GS 1826-24: a case history

- An unusual source in that it consistently* shows regular, consistent bursts
- Early analysis of the variation of the recurrence time with accretion rate suggested metal-poor material Galloway et al. 2004
- Subsequent study showed good agreement with timedependent 1-D models & solar composition Heger et al. 2007
- Relied on lightcurve comparison at a single epoch
- * from ~1986 to 2014 June

our objective:

"precision" nuclear astrophysics from thermonuclear bursts

Meaning, we want to reduce the *astrophysical* uncertainties for observations of bursts, to the point where we are sensitive to the nuclear physics

Our approach

- The three main obstacles to this goal are
 - Lack of well-calibrated observational data for modelers
 - Difficulty to observers in obtaining model results suitable for comparisons (run time/lack of large model grids)
 - No tools to formally compare models and observations in response to variations in nuclear data
- We are pursuing this goal via the Joint Intitute for Nuclear Astrophysics (JINA) Centre for the Evolution of the Elements
- Allow us to draw together experimentalists and observers and offer the long-term opportunity of guiding the experiments
- We have assembled a team of observers, theorists, and nuclear physicists who met in December 2015 at ISSI, Bern, &subsequently in Japan in mid-2016 http://www.issibern.ch/teams/labtostars

Theory-compliant bursts

Model-observation comparison for regular, consistent bursts from GS 1826-24, the "clocked" or "textbook" burster; Heger et al. 2007, ApJ 671, 141L

- We will target systems that show trains of regular, consistent bursts amenable to comparisons with models (e.g. KEPLER)
- We seek to improve the comparisons that are possible via sharing of software tools, observed data & burst model results

New databases of model results

 We have assembled, published, a large sample of KEPLER simulations for comparison with observations

Calibrating burst models

- Another important activity is quantifying the uncertainty in our predictions of burst lightcurves (beyond that introduced from nuclear physics)
- To this end we are working on a set of *test cases* for numerical models
- Numericists with different codes will be encouraged to test their codes against our best estimates for the system parameters (accretion rate etc.) of these objects
- Can compare code results directly against each other
- Will be out soon (preliminary results available now)

Reaction rates and bursts

- Some theoretical work on the expected influence of individual reactions on burst rates, lightcurve shape
- Most important reactions identified from 1-D multizone models Fisker et al. 2008; Cyburt et al. 2010 & 2016
- At the same time, extensive experimental efforts to measure the rates of important reactions, e.g.
 ¹⁵O(α,γ)¹⁹Ne Tan et al. 2009

TABLE 1 Reactions that impact the burst light curve in the single-zone X-ray burst model.							
Rank	Reaction	Type ^a	Sensitivity ^b	Category			
1	${}^{56}\mathrm{Ni}(\alpha,\mathrm{p}){}^{59}\mathrm{Cu}$	U	12.5	1			
2	59 Cu(p, γ) 60 Zn	D	12.1	1			
3	$^{15}\mathrm{O}(\alpha,\gamma)^{19}\mathrm{Ne}$	D	7.9	1			
4	$^{30}S(\alpha,p)^{33}Cl$	U	7.8	1			
5	${}^{26}{\rm Si}(\alpha,{\rm p}){}^{29}{\rm P}$	U	5.3	1			
6	61 Ga(p, γ) 62 Ge	D	5.0	1			
7	$^{23}\mathrm{Al}(\mathrm{p},\gamma)^{24}\mathrm{Si}$	U	4.8	1			
8	${}^{27}P(p,\gamma){}^{28}S$	D	4.4	1			
9	$^{63}\text{Ga}(\mathbf{p},\gamma)^{64}\text{Ge}$	D	3.8	1			
10	60 Zn $(\alpha, p)^{63}$ Ga	U	3.6	1			
11	$^{22}Mg(\alpha,p)^{25}Al$	D	3.5	1			

TADID 1

 ${}^{56}\text{Ni}(p,\gamma){}^{57}\text{Cu}$ 12D 3.41 $^{29}S(\alpha,p)^{32}Cl$ U 2.8131 $^{28}S(\alpha, p)^{31}Cl$ 14U 2.71 $^{31}Cl(p,\gamma)^{32}Ar$ U 152.71 ${}^{35}{\rm K}({\rm p},\gamma){}^{36}{\rm Ca}$ U 2162.5 18 Ne $(\alpha, p)^{21}$ Na 17D 2.3 $\mathbf{2}$ $^{25}\mathrm{Si}(\alpha,\mathbf{p})^{28}\mathrm{P}$ 18 U 1.9 $\mathbf{2}$ ${}^{57}\mathrm{Cu}(\mathrm{p},\gamma){}^{58}\mathrm{Zn}$ D 219 1.7 34 Ar(α ,p) 37 K 20U 1.63 $^{24}\mathrm{Si}(\alpha,\mathbf{p})^{27}\mathrm{P}$ 21U 1.4 3 ${}^{22}Mg(p,\gamma){}^{23}Al$ 22D 3 1.1 65 As(p, γ) 66 Se 23U 3 1.0 $^{14}O(\alpha,p)^{17}F$ 24U 1.03 ${}^{40}Sc(p,\gamma){}^{41}Ti$ 25D 0.93 ${}^{34}{\rm Ar}({\rm p},\gamma){}^{35}{\rm K}$ 26D 3 0.8 $^{47}Mn(p,\gamma)^{48}Fe$ 27D 3 0.8 ${}^{39}Ca(p,\gamma){}^{40}Sc$ 28D 3 0.8

^a Up (U) or down (D) variation that has the largest impact ^b $M_{LC}^{(i)}$ in units of 10^{17} ergs/g/s

https://arxiv.org/abs/1607.03416

A caveat: burst physics is far from complete

Summary and future prospects

- There remain some fundamental shortcomings in our understanding of the various burst phenomena
- At the same time we have access to a substantial accumulated dataset to analyse, as well as detailed models
- Prospects for future model-observation comparisons are excellent, and incorporating nuclear physics may allow us to constrain reaction rates etc.
- Longer term we have the prospect of exciting new data coming in from ASTROSAT and NICER

Observational milestones

- Photospheric radius-expansion bursts reach the (local) Eddington limit; utility as standard candle Basinska et al. 1984; Kuulkers et al. 2003
- Burst oscillations measure the neutron star spin; exhibit 1–2 Hz drifts Strohmayer et al. 1996; Chakrabarty et al. 2003; Watts 2012
- "Superbursts" with durations of hours likely arising from carbon burning Cornelisse et al. 2000
- *"Intermediate duration" bursts* arising in low-accretion rate systems, burning of large pure-He fuel reservoirs Falanga et al. 2009
- Burst spectra exploited to measure neutron star *M*, *R* Özel et al. 2006, 2009, 2012 etc; Steiner et al. 2010 ... see also in 't Zand, arXiv:1102.3345, Strohmayer & Bildsten 2003

Cases of thermonuclear burning

Label	Accretion rate	H-burning	He-burning	Notes
1	> 0.25	stable	stable	no bursts
П	0.15–0.25	stable?	overstable	not observed?
Ш	0.04–0.15	stable	unstable	mixed H/He bursts+ short recurrence times
*	?	none present	unstable	"fast" pure-He bursts in ultracompacts
IV	0.004-0.04	stable	unstable	pure He bursts
V	< 0.004	unstable	unstable	mixed H/He triggered by H; not observed

Accretion rate given as a fraction of the Eddington rate, $1.75 \times 10^{-8} M_{\odot} \text{ yr}^{-1}$ From global linear stability analysis of Narayan & Heyl (2003)

Outstanding questions

- What causes burst oscillations?
- What causes the decrease in burst rate, observed for most sources at accretion rates above ~5% Eddington?
- Can we use bursts to unambiguously measure neutron star mass and radius?
- What ignites in superbursts?
- Why do all types of bursts short, intermediate-duration, and super – seem to ignite at columns well below theoretical predictions?
- Can we use bursts to constrain (or measure) nuclear reactions?

Global burst behaviour

- Burst ignition models predict increasing burst rate with increasing accretion rate, up to the stable burning threshold
- Observations instead show a peak burst rate achieved at much lower accretion rate, and then *decreasing* burst rate at higher accretion rates

Analysis of 6 years of *BeppoSAX* data; Cornelisse et al. 2003