Nuclear structure at N = 29: The structure of ⁴⁷Ar and first spectroscopy of ⁴⁵S

Alexandra Gade NSCL and Department of Physics and Astronomy Michigan State University

Outline

- Neutron-rich nuclei around N=28 still interesting
 - ⁴⁶Ar: A puzzle
- Learning from N=29⁴⁷Ar -A complementary approach
 - Single-neutron strength (pickup)
 - Proton-hole strength (knockout)
- First spectroscopy of ⁴⁵S
- Summary

N=28: Importance for understanding shell evolution

- N=28 is the first shell closure that requires the spin-orbit force
- Neutron-rich N=28 isotones near the dripline may come into reach soon for spectroscopy (explore continuum effects)
- The region around ⁴²Si has been a test bed for shell model (and DFT) to benchmark their implementation of the driving forces of shell evolution
 - Actions of the tensor force, reduced shell gap

UNIVERSITY

- Enhanced quadrupole correlations for orbitals with $\Delta j = \Delta l = 2$
- Recently: Some ab-initio type Hamiltonians need 3body forces to describe N=28 ⁴⁸Ca

Why *N*=28 is still interesting in neutron-rich nuclei

N=28 ⁴⁸Ca **Doubly-magic** ^{47}K ^{46}Ar Huh? Controversial ⁴⁵Cl Collective, shape 44**S** coexistence proven (1997) and (2010) 43**p** Collective ⁴²Si (2007)Anybody? ^{40}Mg

S

MICHIGAN STATE

UNIVERSITY

Region of rapid shell evolution

shell model

- Collectivity of ⁴⁶Ar is not described by shell model puzzling deviation
- In my view $-{}^{46}$ Ar is a key nucleus on the path from doubly-magic ⁴⁸Ca to deformed ⁴²Si that theory has to get right if the 4000 Ca details of shell evolution are claimed to be 3000 Energy (keV) understood and implemented in the 2000

A brief history – Collectivity of ⁴⁶Ar

- Observed for the first time in 1974 produced in a ⁴⁸Ca(⁶Li,⁸B) transfer experiment
- 1996: B(E2)_{up}=196(39) e²fm⁴ (NSCL Coulex)
- 2003: B(E2)_{up}=218(31) e²fm⁴ (NSCL Coulex)
- Shell model: factor of 2.5 higher than the above
- DFT (DD-PCI): B(E2)_{up}= 200 e²fm⁴

MICHIGAN STATE

UNIVERSITY

S

- 2010: B(E2)_{up}=570⁺³³⁵-160 e²fm⁴ (INFN lifetime)
- Shell model claims victory ... or agreement
- 2012: ⁴⁷Ar (2⁺ x p_{3/2}) multiplet B(E2) consistent with low B(E2):
- 2016: B(E2)_{up}=232(19)e²fm⁴ (GANIL Coulex)

D. Mengoni et al., PRC 82, 024308 (2010) R. Winkler et al., PRL 108, 182501 (2012) S. Calinescu et al., PRC 93, 044333 (2016)

⁴⁶Ar has been poked with different probes

- ⁴⁶Ar one-neutron knockout to ⁴⁵Ar was done → C²S=0.2(2) for p_{3/2} orbital found to be small, indicating that the N=28 shell gap is intact A. Gade et al., PRC 71, 051301(R) (2005)
- Thick-target inelastic proton scattering → no surprise, ratio of M_n/M_p neutron/proton matrix elements shows slight n dominance over N/Z L. A. Riley et al., PRC 72, 024311 (2005)
- Masses (or separation energies) agree with shell model Z. Meisel et al., PRL 114, 022501 (2015)

UNIVERSITY

• ⁴⁶Ar from (t,p) broadly consistent with SDPF-U K. Nowak, K. Wimmer et al., PRC 93, 044335 (2016)

Experimental Scheme

Reaction product identification S800 spectrograph

7

Single-particle structure at *N* = 29: The structure of ⁴⁷Ar from complementary probes

One-nucleon pickup at NSCL beam energies

- Selectively populates single-particle states
 with high orbital angular momentum
- Complements knockout reactions

A. Gade, J. A. Tostevin *et al.*, PRC 93, 054315 (2016) and references within

One-nucleon knockout at NSCL beam energies

- Selectively populates single-hole states relative to the projectile ground state
- Cross sections: Quantify the wavefunction overlap of the projectile ground state and the final state in the knockout residue

P.G. Hansen and J. A. Tostevin, ARNPS 53, 219 (2003) A. Gade *et al.*, Phys. Rev. C 77, 044306 (2008)

MICHIGAN STATE

UNIVERSITY

Diversion: Fast-beam γ -ray one-neutron pickup reactions – neutron g_{9/2} spectroscopic strength in ⁴⁹Ca

- Pioneered at NSCL with γray tagging
- Clean spectra through high-l selectivity – only l=3 and l=4 states are populated (60 MeV/u)
- Fast-beam γ-ray tagging and thick C targets allow for measurements at a few 1000 projectiles/s
- One-neutron pickup from ⁴⁸Ca to ⁴⁹Ca provides a sensitive benchmark for shell model and identifies g_{9/2} strength that now can be included in the largest-scale calculations

FYI: Nature of the $9/2^+$ state: core-coupled $({}^{48}Ca(3^-) \ge p_{3/2})^{9/2}$ and a small $g_{9/2}$ component

MICHIGAN STATE

A. Gade, J. A. Tostevin et al., PRC 93, 031601(R) (2016)

9

Single-particle structure at *N* = 29: The structure of ⁴⁷Ar from complementary probes

• Consistent with L. Gaudefroy et al., PRL 97, 092501 (2006)

A. Gade, J. A. Tostevin et al., PRC 93, 054315 (2016) A. Gade, INPC 2016 10

Single-particle structure at N = 29: The structure of ${}^{47}Ar$ from complementary spectroscopy ¹²C(⁴⁶Ar,⁴⁷Ar+γ)X

5/2-

5/2-

5/2-

5/2-

5/2-

7/2-

5/2-

7/2-

Single-particle structure at *N* = 29: The structure of ⁴⁷Ar from comprehensive spectroscopy ⁹Be(⁴⁸K,⁴⁷Ar+γ)

3.0

2.0

1.5

(a)

3/2-

5/2-

Expt. ⁴⁸K-1p

12

 Complementary reaction: One-proton knockout from ⁴⁸K probes the single-proton structure of ⁴⁷Ar relative to ⁴⁸K. A 1⁻ ground-state spin assignment from ISOLDE laser spectroscopy (K. Kreim 2014)

Single-particle structure at *N* = 29: New frontiers – first spectroscopy of ⁴⁵S

- One-proton removal from ⁴⁶Cl enabled the first spectroscopy of ⁴⁵S
- The ground state of ⁴⁶Cl is not known and so the one-proton knockout cannot be analyzed as for the ⁴⁸K-1p reaction
 - A. Gade, J. A. Tostevin et al., PRC 93, 054315 (2016)

MICHIGAN STATE

UNIVERSITY

S

Single-particle structure at *N* = 29: New frontiers – first spectroscopy of ⁴⁵S

 Assuming a 1⁻ ground state for ⁴⁶Cl, the level scheme on the right is predicted to be observed for ⁴⁵S assuming large-scale shell model with the SDPF-U effective interaction ⁴⁵S from ⁴⁶Cl-1p SDPF-U with 1^{- 46}Cl g.s.

A. Gade, J. A. Tostevin *et al.*, PRC 93, 054315 (2016)

14

Summary

- Neutron-rich nuclei with N=28 show a rich structure with magicity at ⁴⁸Ca, shape-coexistence at ⁴⁴S, high collectivity at ⁴²Si, and a puzzle at ⁴⁶Ar
- Complementary nucleon-adding and removing direct reactions enable the identification of proton-hole and neutron-particle states in ⁴⁷Ar, relative to ⁴⁸K and ⁴⁶Ar, respectively
- ⁴⁸K-1p and ⁴⁶Ar+1n spectroscopic strengths compare well to shell model with SDPF-U and SDPF-MU Hamiltonians – no hint on what is going on at ⁴⁶Ar and the failure of both effective interactions to describe its collectivity
- South of ⁴⁷Ar, performed first spectroscopy of ⁴⁵S
- The challenge remains to explain the shell evolution from ⁴⁸Ca to ⁴²Si, including a proper account of the quadrupole collectivity in ⁴⁶Ar

Partners in Crime

Gamma Group

and NSCL exp. collaborators

- D. Weisshaar
- P. Bender

υΝΙΥ

Theory collaborators J. Belarge

D. Bazin

- E. Lunderberg
- B. A. Elman
- B. R. Longfellow
- J. A. Tostevin (Surrey, UK)
- Y. Utsuno (JAERI, Japan)

B. A. Brown (NSCL)

Former Gamma Group Members:

- S. R. Stroberg (Now: Postdoc at TRIUMF)
- F. Recchia (Now: Researcher at Padova, Italy)
- T. Baugher (Now: Postdoc at LANL)
- M. Bowry (Now: Postdoc at TRIUMF)
- A. Ratkiewicz (Now: Postdoc at LLNL)
- R. Winkler (Now: Staff at LANL)

MICHIC K. Wimmer (Now: Lecturer at Tokyo University)

Pickup reaction theory (J. A. Tostevin)

- ¹²C-induced pickup calculated in (post-form) DWBA (FRESCO)
- Transfer calculated as ⁴⁸Ca(¹²C, ${}^{11}C(I^{\pi})){}^{49}Ca(J^{\pi})$ with incoherent sum over I=3/2- (g.s), 1/2- (2 MeV), 3/2-(4.8 MeV) for ¹¹C with C²S from (e,e'p)
- Distorting potential in entrance and exit channel from double folding with effective NN interaction by Ray (like in knockout)
- Bound-state geometries of the neutron in the ¹²C inital and ⁴⁹Ca final state guided by HF like in knockout

MICHIGAN STATE

UNIVERSITY

୍ଞ

Lifetime measurement

 Plunger measurement, uses intensity ratios of peaks stemming from emission before or after a degrader

- Marginal statistics
- Shell model (SDPF-U with $e_p/e_n=1.5/0.5$) agrees

