

Studies on η meson production in dp collisions at the magnetic spectrometer ANKE

Christopher Fritzsch for the ANKE collaboration

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik

25th International Nuclear Physics Conference, Adelaide Convention Centre, Australia Hadron Structure and Spectroscopy (Session: R6)

September 15th, 2016

Westfälische Wilhelms-Universität Münster

$d + p \rightarrow {}^{3}\text{He} + \eta$

Christopher Fritzsch, WWU Münster

INPC, Adelaide September 15th, 2016

- total and differential cross sections of the reaction $dp \rightarrow {}^{3}\text{He}\eta$ are of special interest \Rightarrow differ strongly from a pure phase space behaviour
- indication of a quasi bound state of the ${}^{3}\text{He}\eta$ -system
- high precision data from the ANKE spectrometer up to Q = 15 MeV

- total and differential cross sections of the reaction $dp \rightarrow {}^{3}\text{He}\eta$ are of special interest \Rightarrow differ strongly from a pure phase space behaviour
- indication of a quasi bound state of the ${}^{3}\text{He}\eta$ -system
- high precision data from the ANKE spectrometer up to Q = 15 MeV \Rightarrow extraction of total and differential cross sections

- total and differential cross sections of the reaction $dp \rightarrow {}^{3}\text{He}\eta$ are of special interest \Rightarrow differ strongly from a pure phase space behaviour
- indication of a quasi bound state of the ${}^{3}\text{He}\eta$ -system
- high precision data from the ANKE spectrometer up to Q = 15 MeV
 - \Rightarrow extraction of total and differential cross sections
 - ⇒ overlap with data of the WASA experiment (previous talk of Nils Hüsken)

- total and differential cross sections of the reaction $dp \rightarrow {}^{3}\text{He}\eta$ are of special interest \Rightarrow differ strongly from a pure phase space behaviour
- indication of a quasi bound state of the ${}^{3}\text{He}\eta$ -system
- high precision data from the ANKE spectrometer up to Q = 15 MeV
 - \Rightarrow extraction of total and differential cross sections
 - ⇒ overlap with data of the WASA experiment (previous talk of Nils Hüsken)

- differential cross section linear in $\cos heta_{\eta}^{cms}$
- angular dependence summarized as terms of an asymmetry parameter α

$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms} = 0}$$

- data show a distinct effect of an s- and p-wave interference
 ⇒ rapid variation of the phase
 - \Rightarrow expected for a pole near threshold
- task: investigate the behaviour of the asymmetry parameter α more precisely
 - \Rightarrow final state momentum p_{η} very well-known (P. Goslawski)
 - \Rightarrow reduce uncertainties of α
- careful luminosity determination necessary

"COoler SYnchrotron" COSY

- pre-accelerator JULIC
 - \Rightarrow protons: 45 MeV
 - \Rightarrow deuterons: 90 MeV
- storage ring COSY
 - \Rightarrow length: 184 m
 - \Rightarrow momenta up to 3.7 GeV/*c* achievable
 - \Rightarrow 24 dipols (red)
 - \Rightarrow 56 quadrupol magnets (yellow)
- two cooling systems
 - ⇒ electron cooling ⇒ $p_{beam} < 0.6 \text{ GeV}/c$

⇒ stochastic cooling ⇒ $p_{beam} = (1.5 - 3.3) \text{ GeV}/c$

• possible momentum spread $\Delta p/p = 10^{-4}$

"COoler SYnchrotron" COSY

Christopher Fritzsch, WWU Münster

Magnetic Spectrometer **ANKE**

Westfälische Wilhelms-Universität Münster

S. Barsov, Nuclear Instruments and Methods in Physics Research A 462 (2001) 364-381

Forward Detection System

- track reconstruction \Rightarrow three multiwire chambers (green)
- energy loss and time-of-flight measurements ⇒ three layers of scintillator hodoscopes (yellow)

Measurements: Experimental Conditions

- data used for: high precision determination of the η meson mass $(d + p \rightarrow {}^{3}\text{He} + \eta)$ and studies on the two pion production $(d + p \rightarrow {}^{3}\text{He} + \pi^{+} + \pi^{-})$
- supercycle mode: one supercycle consists of up to 7 different beam momenta \Rightarrow 19 beam momenta close to η production threshold

flattop	1st supercycle p_d / (MeV/c)	2nd supercycle p_d / (MeV/ c)	3rd supercycle p_d / (MeV/c)	
0	3120.17(17)	3120.00(22)	3125	
2	3146.41(17)	3147.35(17)	3146	
3	3148.45(17)	3150.42(17)		
4	3152.45(17)	3154.49(17)	3157.48(22)	
5	3158.71(17)	3162.78(17)	3160.62(22)	
6	3168.05(17)	3172.15(17)		
7	3177.51(17)	3184.87(17)	3204.16(23)	

Measurements: Experimental Conditions

Westfälische Wilhelms-Universität Münster

- data used for: high precision determination of the η meson mass $(d + p \rightarrow {}^{3}\text{He} + \eta)$ and studies on the two pion production $(d + p \rightarrow {}^{3}\text{He} + \pi^{+} + \pi^{-})$
- supercycle mode: one supercycle consists of up to 7 different beam momenta \Rightarrow 19 beam momenta close to η production threshold

flattop	1st supercycle p_d / (MeV/c)	2nd supercycle p_d / (MeV/c)	3rd supercycle p_d / (MeV/c)	
0	3120.17(17)	3120.00(22)	3125	
2	3146.41(17)	3147.35(17)	3146	be
3	3148.45(17)	3150.42(17)		thre
4	3152.45(17)	3154.49(17)	3157.48(22)	inde
5	3158.71(17)	3162.78(17)	3160.62(22)	
6	3168.05(17)	3172.15(17)		
7	3177.51(17)	3184.87(17)	3204.16(23)	

below the η production threshold $(d + p \rightarrow {}^{3}\text{He} + \eta)$ for a smooth model independent background description

Normalization Reaction $d + p \rightarrow d + p$

0.3

0.15

0

0.05

0.2

momentum transfer -t / (GeV/c)²

0.25

0.35

0.4

Results for $d + p \rightarrow d + p$

- identification of the reaction via the missing mass technique
- determination performed for 18 momentum transfer bins $\Delta t = 0.01 (\text{GeV}/c)^2$ \Rightarrow for each of the 19 beam momenta
- luminosity precision achieved:

- improvement by at least a factor of two
- cross check via $d + p \rightarrow {}^{3}\text{He} + \pi^{0}$ in progress

- solid lines indicate the expected kinematical loci for $dp \rightarrow {}^{3}\text{He}\eta$ and $dp \rightarrow {}^{3}\text{He}\pi^{0}$
- ANKE has full geometrical acceptance for the reaction $dp \rightarrow {}^{3}\text{He}\eta$
- clear separation from other reactions possible

- solid lines indicate the expected kinematical loci for $dp \rightarrow {}^{3}\text{He}\eta$ and $dp \rightarrow {}^{3}\text{He}\pi^{0}$
- ANKE has full geometrical acceptance for the reaction $dp \to {}^3\mathrm{He}\eta$
- clear separation from other reactions possible
- distinct η signal for each beam momentum
- high statistics of more than 10^5 ${}^{3}\text{He}\eta$ events per energy

- solid lines indicate the expected kinematical loci for $dp \rightarrow {}^{3}\text{He}\eta$ and $dp \rightarrow {}^{3}\text{He}\pi^{0}$
- ANKE has full geometrical acceptance for the reaction $dp \to {}^3\mathrm{He}\eta$
- clear separation from other reactions possible
- distinct η signal for each beam momentum
- high statistics of more than 10^5 ${}^{3}\text{He}\eta$ events per energy
- accurate investigation of the angular dependence possible
- background description using data taken below the η production threshold

Westfäll Wilhelm Münster

- solid lines indicate the expected kinematical loci for $dp \rightarrow {}^{3}\text{He}\eta$ and $dp \rightarrow {}^{3}\text{He}\pi^{0}$
- ANKE has full geometrical acceptance for the reaction $dp \to {}^3\mathrm{He}\eta$
- clear separation from other reactions possible
- distinct η signal for each beam momentum
- high statistics of more than 10^5 ${}^{3}\text{He}\eta$ events per energy
- accurate investigation of the angular dependence possible
- background description using data taken below the η production threshold

Christopher Fritzsch, WWU Münster

WESTFÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

Christopher Fritzsch, WWU Münster

WESTFÄLISCHE

MÜNSTER

WILHELMS-UNIVERSITÄT

<u>+</u>

Westfälische Wilhelms-Universität

MÜNSTER

SCHE

÷

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 1.14 MeV

Westfälische Wilhelms-Universität Münster

÷

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 1.36 MeV

Westfälische Wilhelms-Universität Münster

<u>.</u>

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 1.63 MeV

Westfälische Wilhelms-Universität Münster

<u>.</u>

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 2.10 MeV

Westfälische Wilhelms-Universität Münster

<u>.</u>

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 2.59 MeV

Westfälische Wilhelms-Universität Münster

<u>.</u>

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

50 differential cross section d $\sigma/d\Omega$ / (nb) ರ 0.4 preliminary angular asymmetry preliminary 45 0.3 40 0.2⊢ 35 H H 30 0.1⊢ 25 20 -0.1 15 -0.2 10 -0.3 5 -0.4 **0**¹ 20 40 60 80 100 0 -0.5 0.5 0 final state momentum p^{CMS}/(MeV/c) cos(ϑ^{CMS})

Q = 3.08 MeV

Christopher Fritzsch, WWU<u>Münster</u>

Westfälische Wilhelms-Universität Münster

<u>.</u>

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 3.79 MeV

Westfälische Wilhelms-Universität Münster

<u>.</u>

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 4.09 MeV

Westfälische Wilhelms-Universität Münster

<u>.</u>

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 4.55 MeV

Westfälische Wilhelms-Universität Münster

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 5.07 MeV

Westfälische Wilhelms-Universität Münster

<u>.</u>

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

 $Q = 6.33 \, MeV$

Westfälische Wilhelms-Universität Münster

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

 $Q = 7.32 \, MeV$

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

Q = 8.60 MeV

Christopher Fritzsch, WWU Münster

INPC, Adelaide September 15th, 2016

Westfälische

MÜNSTER

WILHELMS-UNIVERSITÄT

• asymmetry parameter
$$\alpha = \frac{d}{d(\cos \theta_{\eta})} \ln \left(\frac{d\sigma}{d\Omega}\right)_{|\cos \theta_{\eta}^{cms}=0}$$

50 differential cross section d $\sigma/d\Omega$ / (nb) 8 0.4⊢ preliminary angular asymmetry preliminary 45 0.3 40 0.2⊢ 35 30 0.1⊢ 25 20 -0.1 15 -0.2 10 -0.3 5 -0.4 **0**¹ 20 40 60 80 100 0.5 -0.5 0 final state momentum p^{CMS} / (MeV/c) cos(ϑ^{CMS})

Q = 10.37 MeV

Christopher Fritzsch, WWU Münster

Westfälische Wilhelms-Universität

MÜNSTER

Westfälische Wilhelms-Universität Münster

$p + n \rightarrow d + \eta$ via the reaction $p + d \rightarrow p_{spectator} + d + \eta$

Westfälische Wilhelms-Universität Münster

• indication of a quasi bound state of the ${}^{3}\text{He}\eta$ -system

• study of A-dependency of the Final State Interaction (FSI) important \Rightarrow investigation of the $d\eta$ -system

• pole near threshold would influence the ηN production above threshold \Rightarrow described by a FSI-ansatz (s-wave)

$$\frac{p_i}{p_f} \cdot \frac{d\sigma}{d\Omega} = |f|^2 = |f_s \cdot FSI|^2$$
$$\mathsf{FSI} = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2}r_0 a p_f^2} = \frac{1}{(1 - p_f/p_1)(1 - p_f/p_2)}$$

- current database on $pn \rightarrow d\eta$:
 - ✓ PINOT: η production much stronger in *pn* than in *pp* collisions
 ✓ two measurements by PROMICE- WASA at CELSIUS *pn* → dη via *pn* → dηp_{spectator}
- near threshold data show clear
 FSI enhancement
- steep rise of cross section up to 30 μb
- more detailed and independent data of high interest

- current database on $pn \rightarrow d\eta$:
 - ✓ PINOT: η production much stronger in pn than in pp collisions ✓ two measurements by PROMICE-WASA at CELSIUS $pn \rightarrow d\eta \ \forall i \Box \ pn \rightarrow d\eta p_{spectator}$
- near threshold data show clear **FSI** enhancement
- steep rise of cross section up to $30 \ \mu b$
- more detailed and independent data of high interest

LHELMS-UNIVERSITÄT

- main goals: extraction of scattering length $a_{d\eta}$ with data close to threshold and differential cross section to determine the limit of the s-wave FSI-ansatz
- reaction used: $p + d \rightarrow p_{spectator} + d + \eta$

 \Rightarrow quasi free reaction $p + n \rightarrow d + \eta$

- $p_{spectator}$ carries Fermi motion within the nucleus
- supercycle mode: alternate between two different beam momenta

 $p_1 = 2.09 \, \text{GeV}/c$

$$p_2 = 2.25 \, \text{GeV}/c$$

Fd-System with STT Detectors

Fd-System with STT Detectors

Fd-System with STT Detectors

Particle Identification $(p_{spectator})$

determination of excess energy on an

event-by-event basis

- \Rightarrow one beam momentum =
 - wide excess energy range
- identification of spectator protons mandatory
- use of two Silicon Tracking Telescopes (STT)
- consist of three layers of semiconductor
 - ⇒ track reconstruction
 - \Rightarrow energy loss measurements
- cover polar angles between 75° and 140°

Particle Identification $(p_{spectator})$

- determination of excess energy on an event-by-event basis
 - \Rightarrow one beam momentum =
 - wide excess energy range
- identification of spectator protons mandatory
- use of two Silicon Tracking Telescopes (STT)
- consist of three layers of semiconductor
 - \Rightarrow track reconstruction
 - \Rightarrow energy loss measurements
- cover polar angles between 75° and 140°

Particle Identification (d)

- detection of fast deuteron in the Fd-system
- separation from protons using energy loss and time of flight measurements
- cut parameters determined via the

• event selection via missing mass technique

WILHELMS-UNIVERSITÄT

ΜΪΊΝςτερ

Background Description

- background mainly multipion production
- model-independent approach for background subtraction
- analyze data with "false" beam momentum
 - ⇒ event-by-event Lorentz transformation of measured particle to "false" laboratory system
 - \Rightarrow same kinematical limit

WILHELMS-UNIVERSITÄT

ΜΪΝςτερ

Preliminary Results for $p + d \rightarrow p_{spectator} + d + \eta$

- background mainly multipion production
- model-independent approach for background subtraction
- analyze data with "false" beam momentum
 - ⇒ event-by-event Lorentz transformation of measured particle to "false" laboratory system
 ⇒ same kinematical limit
- subtraction results in peak at η -mass
- and shifted negativ peak

• very preliminary fit data with s-wave FSI ansatz $\Rightarrow |a| \approx 1.2$ fm

steep rise near threshold observed

- subtraction results in peak at η -mass and shifted negativ peak
- \Rightarrow same kinematical limit

laboratory system

 analyze data with "false" beam momentum \Rightarrow event-by-event Lorentz transformation

of measured particle to "false"

 model-independent approach for background subtraction

Preliminary Results for $p + d \rightarrow p_{spectator} + d + \eta$

Summary & Outlook

- $d + p \rightarrow {}^{3}\text{He} + \eta$:
 - luminosities were determined via dp-elastic scattering for each of the 19 beam momenta
 - high precision of $\Delta L_{stat} = 1\%$ and $\Delta L_{sys} = 6\%$ achieved
 - ⇒ improvement by at least a factor of two compared to previous analyses
 - ANKE has full geometrical acceptance for the reaction $dp \rightarrow {}^{3}\text{He}\eta$
 - clear separation from other reactions possible
 - high statistics of more than 10^5 ³He η events per energy
 - determination of total and differential cross section and angular asymmetry parameter α
- in progress:
 - iterative acceptance correction
 - luminosity cross check via $d + p \rightarrow^{3} \text{He} + \pi^{0}$
 - checks of systematics

Summary & Outlook

- $p + d \rightarrow p_{spectator} + d + \eta$:
 - approximately 100k events between Q = 0 MeV and Q = 100 MeV
 - reconstruction of spectator protons with STTs
 - \Rightarrow STT calibration almost finalized
 - identification of deuterons with Fd-system in progress
 - \Rightarrow preliminary calibration of Fd-system
- in progress:
 - fine calibration of the Fd-system
 - Iuminosity determination via elastic scattering
 - extraction of total and differential cross sections
 - determination of limit for s-wave FSI-ansatz
 - constrain allowed region for the scattering length of the $d\eta$ -system

Westfälische Wilhelms-Universität Münster

Thank you for your attention!

cknowledgements:

work presented was done or supported by

Christopher Fritzsch, Alfons Khoukaz, Marcel Rump, Daniel Schröer, and the ANKE collaboration

This work has been supported by the COSY-FFE program of the Forschungszentrum Jülich

Christopher Fritzsch

INPC, Adelaide September 15th, 2016