Experiment on search for neutronantineutron oscillations using a projected UCN source at the WWR-M reactor

A. Fomin

Project leader: A. Serebrov

PNPI, Gatchina, Russia

26th International Nuclear Physics Conference, Adelaide, Australia September 11-16, 2016

Baryon Asymmetry

ILL beam experiment

At ILL/Grenoble reactor in 89-91 by Heidelberg-ILL-Padova-Pavia Collaboration

M. Baldo-Ceolin et al., Z. Phys., C63 (1994) 409

ESS beam experiment

Scheme of Horizontal N-Nbar experiment for ESS Neutron Source

NNbar via UCN

 $N \cdot t^2$ – discovery potential

Storage trap: height 2.5 m, $v_{boundary}$ = 6.8 m/s, diffusion 90 %, abs. in walls 3·10⁻⁵

Progress of UCN sources

MCNP neutron flux calculation results and heat generation in thermal column of WWR-M reactor at 15 MW

Project of UCN source at reactor WWR-M (PNPI, Gatchina)

MC model of the source

(1) source chamber; (2) neutron guide; (3) UCN trap; (4) membrane in front of the inlet to the UCN trap;(5) pipe for filling the chamber; (6) pipeline for evacuation of the chamber (UCN gravitational shutter)

UCN density

Production of the source 10⁸ UCN/s.

What is the probability for UCÑ to be reflected?

We can consider two cases:

Reflection coefficient for UCÑ

UCN number in the trap for different storage trap radius

UCN density for different storage trap radius

Storage trap: height 2.5 m, $v_{boundary}$ = 6.8 m/s, diffusion 90 %, abs. in walls 3.10⁻⁵

UCN time of flight for different storage trap radius

Storage trap: height 2.5 m, $v_{boundary}$ = 6.8 m/s, diffusion 90 %, abs. in walls 3.10⁻⁵

$N \cdot t^2$ for different storage trap radius

Storage trap: height 2.5 m, $v_{boundary} = 6.8$ m/s, diffusion 90 %, abs. in walls $3 \cdot 10^{-5}$

Oscillation period

$$\tau_{n H_0} = \sqrt{\frac{(N \cdot t^2) \cdot T \cdot \varepsilon}{N_0}}$$

 $T \sim 3$ years

 $\varepsilon = 0.9$

№ = 0 (≤ 2.3 at 90% CL)

$$\tau_{nn} \ge (1 \div 2) \cdot 10^9 \text{ s (90\% CL)}$$

$N \cdot t^2$ for different storage trap height

Storage trap: $v_{boundary} = 6.8 \text{ m/s}$, diffusion 90 %, abs. in walls $3 \cdot 10^{-5}$

Design of the setup

Design of the setup

UCN facilities at reactor WWR-M (preliminary)

Conclusion

- 1. Designed storage trap for NNbar oscillation experiment at reactor WWR-M: horizontal cylinder with diameter 2 m, length 4 m.
- 2. Increase of the experiment sensitivity is about $10 \div 40$ times to ILL level.
- 3. Oscillation period for 3 years: $\tau_{nR/2} \ge (0.7 \div 1.4) \cdot 10^9 \text{ s (90\% CL)}$