

Contents

- 1. A short history and outlook of RHIC species, energies, luminosity, polarization
- 2. Upgrades for high energy A+A bunch intensity + stochastic cooling
- 3. Upgrades for low energy A+A bunch intensity + electron cooling
- Upgrades for p↑+p↑
 bunch intensity + head-on beam-beam compensation, polarization

Relativistic Heavy Ion Collider -

high-luminosity heavy ion and only polarized proton collider

RHIC science programs

1. Creation and study of the Quark Gluon Plasma

[2015 NSAC Long Range Plan for Nuclear Science]

QGP close to perfect liquid

The QGP is a strongly coupled nearly "**perfect**" liquid (η /s near the quantum limit $1/4\pi$). RHIC's cooler QGP is (on average) closer to perfection than the 40% hotter QGP produced at LHC.

2. Origin of the proton spin

[2015 NSAC Long Range Plan for Nucl. Science]

RHIC result: not zero over some x-range

major emphasis. Data from the RHIC run in 2009 have for the first time shown that gluons inside a proton are polarized. The integral of $\Delta g(x,Q^2=10 \text{ GeV}^2)$ in the region x > 0.05 is $0.20^{+0.06}_{-0.07}$ at 90% C.L.

A short history and outlook of RHIC

Delivered Integrated Luminosity – symmetric species

Run-13 p+p luminosity exceeds all previous p+p runs combined, Run-15 all previous 100 GeV runs

<u>Nucleon-pair luminosity</u>: luminosity calculated with nucleons of nuclei treated independently; allows comparison of luminosities of different species; appropriate quantity for comparison runs.

Dramatic increase in performance as a result of R&D, capital projects, Accelerator Improvement Projects, and replacement of obsolete technology

Delivered Integrated Luminosity – asymmetric species

5 asymmetric combination to date:

- p↑+Au,
- p↑+Al (never done before)
- h+Au
- d+Au (at 4 different energies)
- Cu+Au

Best week d+Au Run-16 10x better than Run-8

can collide any species with any other species

Asymmetric operation requires:

- sources for two different beams (laser ion source + EBIS; Tandems)
- reliable injector switch-over during RHIC injection (AGS cold snake turn on/off for p1)
- accommodation of tighter apertures in IRs (DX magnet move for p↑+A, limitations from CeC PoP chamber in Run-16)
- in p↑+A: acceleration of A to plateau near transition for proton injection
- increased experimental protection (PHENIX MPC-EX damage in Run-15)

RHIC proposed run plan – extents to mid 2020s

Years	Beam Species and Energies	Science Goals	New Systems Commissioned		
2016	High statistics Au+Au d+Au beam energy scan	Complete heavy flavor program First measurement of Λ_c Collectivity in small systems today	Coherent e-cooling test I		
2017	High statistics Pol. p+p at 510 GeV	Transvers High-energy p↑+	↑p and A+A est II		
	96Zr+96Ru at 200 GeV Avv Av at 27 GeV ? undance of	Establish STAR (need leveled L)	•		
3% and 6%	% respectively				
2019-20	7.7-20 GeV Au+Au (BES-2)	Search for of deconfi LOW-energy A+A			
2021	TBD	STAR (L requests request requests reque	uire new e-cooler) sPHENIX installation		
2022-??	200 GeV Au+Au with upgraded detectors Pol. p+p, p+Au at 200 GeV	Jet, di-jet, v-iet probes of parton transport : High-energy p↑+	-		
mid-2020s	Transition to eRHIC ?	STAR and sPHEI Gluon stri (sPHENIX L requests req			

RHIC ultimate luminosity and polarization goals at high energy

parameter	unit	unit achieved		goals		
Au-Au operation		2016		≥ 2021 56 MHz SRF + AGS + 9 MHz RF		
energy	GeV/nucleon	100		10	00	
no colliding bunches		111		11	/ =0.01 / 00.11 0	
bunch intensity	10 ⁹	2.0		2.5	numbers (2.0)	
avg. luminosity	10 ²⁶ cm ⁻² s ⁻¹	87 44× design			(100) chieved	
p↑-p↑ operation		2015		≥ 2021 OPPIS + 9 MHz RF + e-lenses		
energy	GeV	100	255	100	255	
no colliding bunches		– 111 –		– 111 –		
bunch intensity	10 ¹¹	2.25	1.85	3.0	3.0	
avg. luminosity	10 ³⁰ cm ⁻² s ⁻¹	63 1× design	160 1.3× design	175 2.8× achieved	600 3.8× achieved	
avg. polarization*	%	55	52	60	55	

^{*}Intensity and time-averaged polarization as measured by the H-jet. Luminosity-averaged polarizations are higher.

Physics integration

BES-I and **BES-II** luminosities

BROOKHAVEN NATIONAL LABORATORY

RHIC high-energy A+A operation with stochastic cooling

RHIC Run-14

Delivering RHIC-II luminosity

Au bunch intensity evolution

K. Zeno, RF, et al.

Wolfram Fischer

M. Brennan, M. Blaskiewicz, F. Severino, PRL 100 174803 (2008); K. Mernick PRSTAB, PAC, EPAC

Run-16 Au+Au at 100 GeV/nucleon

Luminosity

- More collisions in 10 min than in entire
 5-week commissioning run in 2001
- L_{avg} now 44x design

Run Coordinator: Xiaofeng Gu

25% increase in bunch intensity due to AGS bunch merging scheme at injection change from $8\rightarrow4\rightarrow2$ to $12\rightarrow6\rightarrow2$ (with minimal increase in longitudinal emittance!)

Maximized *L* to PHENIX and delivered leveled *L* to STAR using stochastic cooling and transverse offset at IP

[2015 NSAC Long Range Plan for Nuclear Science]

RHIC low-energy A+A operation with electron cooling

LEReC Physics integration

BES-II required events

RHIC Beam Energy Scan II (BES-II) for search of critical point in QCD phase diagram

center-of-mass energy √s _{NN}	GeV	7.7	9.1	11.5	14.6	19.6	_
events BES-I, actual	M	4.3		11.7	24	36	
events BES-II, min goal	M	80	100	150	200	300	
events BES-II, full goal	M	100	160	230	300	400	

General strategy to maximize integrated luminosity:

Cooling at the 3 lowest energies (4x gain in L_{avg}), no cooling at the 2 highest energies (3x gain in L_{avg}) => demonstrated at $\sqrt{s_{NN}}$ = 19.6 GeV in Run-16

Start BES-II at highest energies (machine ready w/o cooling) Interleave cooling commissioning with physics operation Finish BES-II at lowest energies (largest gain in L_{avg} and time)

Physics integration

BES-I and **BES-II** luminosities

BROOKHAVEN NATIONAL LABORATORY

Low Energy RHIC electron Cooling (LEReC)

A. Fedotov et al.

Energies *E* : 1.6, 2.0 (2.65) MeV

Avg. current I_{avg} : 27 mA

Momentum $\delta p/\bar{p}: 5\times 10^{-4}$

Luminosity gain: 4×

1st bunched beam electron cooler

planned operation in 2019/2020

RHIC p1+p1 operation with head-on beam-beam compensation

p bunch intensity and polarization

Time [year]

$$L(t) = \frac{1}{4\pi} f_0 N \frac{N_b^2(t)}{\varepsilon(t)\beta^*(t)} h(\beta^*, \sigma_s, \theta)$$

A. Zelenski, H. Huang, K. Gardner, K. Zeno, RF, et al.

Run-15 p↑+p↑ at 100 GeV

Beam-beam compensation

First hadron collider with head-on beam-beam compensation: lattice + e-lenses

New lattice (ATS type, S. White) – phase advance $k\pi$ between IP8 and e-lens minimizes beambeam resonance driving terms

New lattice has larger off-momentum dynamic aperture and accommodates higher beam-beam parameter §

Electron lenses – reduce beam-beam induced tune spread

Tune width measurement: imaginary part of complex beam transfer function (BTF); p+Al – no coherent bb modes

Transition to an electron-ion collider, mid 2020s

White paper requirements:

70% polarized e and p/d/h beams 🗸

Ion beams from d to Pb/U

E_{com} from 20 to 100 (150) CoV

Luminosity Jefferson Lab also working on an EIC

Possibility

Highest lur many design

Plenary presentation this afternoon:

Linac-Ring

highest ult

Ring-Ring

lower ultin

Abhay Deshpande, Stony Brook

"Science and status

of the Electron-Ion Collider in the US"

Technolog

High-curre

Highly-damped SKF (LK)

FFAG multi-pass ERL (LR)

SRF crab cavities (LR+RR)

Strong hadron cooling (LR+RR)

- LUKU at BNL

– Cβ at Cornell – d

R&D at BNL and CERN (HL-LHC)

R&D at BNL and JLab

Electron Beamlines

1.7-5.0 GeV

6.7-18.3 GeV

Up to 20 GeV

(last pass or

ng gun)

RHIC for the next decade

Summary

Cu+Au Au+Au

U+U

Status

- Au+Au $L_{avg} = 8.7x10^{27} \text{ cm}^{-2}\text{s}^{-1}$ (44x design)
- $p\uparrow+p\uparrow$ $L_{avg} = 1.6x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ (1.3x design), $P_{avg} = 53\%$
- Au+Au energy range √s_{NN} = 7.7 200 GeV (lowest E ~1/3 of nominal injection)
- flexibility to collide any ion with any other ion from p↑ to U
- leveled luminosity for STAR

Upgrades

Au+Au at √s_{NN} = 200 GeV: 2x L_{avg} increase in bunch intensity, MPS

100

- p↑+p↑: 3-4x L_{avg}
 increase in bunch intensity while maintaining polarization
 full use of head-on beam-beam compensation
- maintain flexibility

