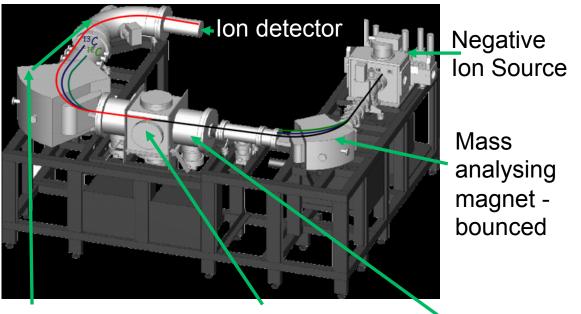


Trends in Accelerator Mass Spectrometry (AMS)

Keith Fifield Department of Nuclear Physics ANU



22 m

(Sinte

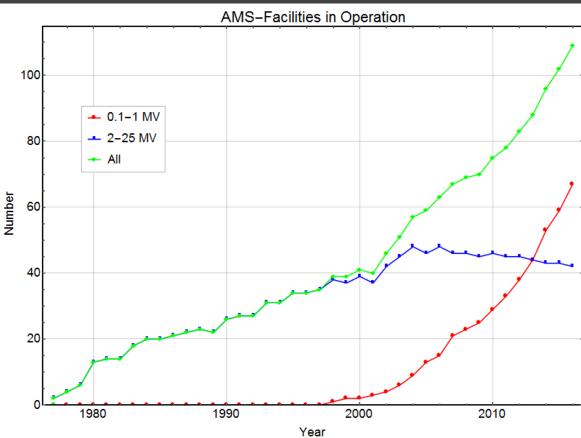
Mini Radiocarbon dating system (MICADAS) 2.5m x 3.0m **MICADAS – ETH Zürich**

+ve ion analysis Magnet + ESA He gas stripper

Tandem accelerator 200 kV

Essential features of an AMS system

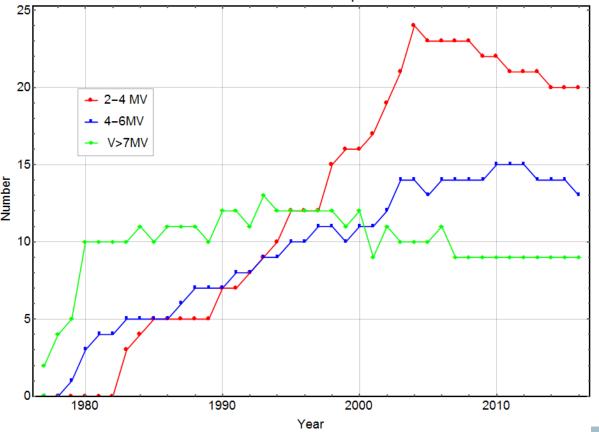
- <u>Negative</u> ion source can provide discrimination against isobars.
 E.g. ¹⁴C⁻ and ²⁶Al⁻ are stable, whereas ¹⁴N⁻ and ²⁶Mg⁻ are not.
- Dissociation of molecules, e.g. ¹³CH⁻, ¹²CH₂⁻, and conversion to positive ions so that subsequent analysis selects only ¹⁴C. Requires acceleration to sufficient energy for high yield of positive ions.
- Where the ion source does not provide isobar discrimination, e.g. ³⁶Cl and ³⁶S, further acceleration to an energy at which ion identification techniques from nuclear physics can be used.


AMS's debt to Nuclear (and Atomic) Physics

- Negative ion sources
- Tandem electrostatic accelerators, including foil and gas strippers
- Detectors ionization chambers, silicon detectors, TOF
- Isobar separation techniques absorbers, degraders, gas-filled magnet.
- Measurements of charge state distributions and charge-changing cross sections

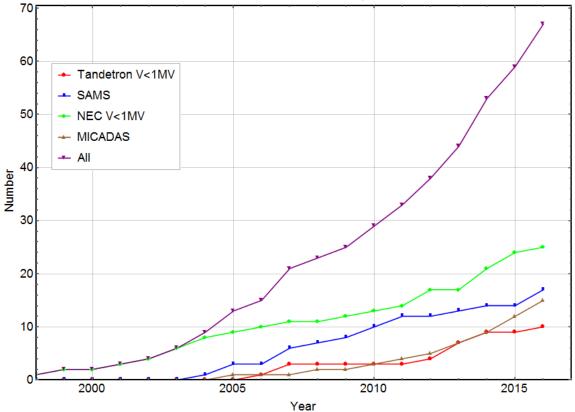
Not all one way, however: $AMS \rightarrow Nuclear Physics$

- Ion source development
- Gas stripper development
- Automation



- 107 facilities in total
- 64 used for ¹⁴C only.

AMS-Facilities in Operation


Notes:

•

- V>7 MV highly versatile. Feasibility and sensitivity.
 - V= 4-6 MV versatile. Can do most isotopes.
 - V=2-4 MV versatile, but many used only for ¹⁴C.

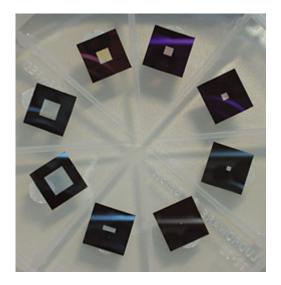
Small AMS-Facilities in Operation

- Notes
- SSAMS and MICADAS ¹⁴C only.
- 2. Others more versatile ¹⁰Be, ²⁶Al, ⁴¹Ca, ¹²⁹I, actinides (Pu, ²³⁶U).

In Australia:

V>7 MV:

- 14UD (15MV) at ANU
- ANTARES (9 MV) at ANSTO
- V = 4-6 MV
- SIRIUS (6 MV) at ANSTO
- V = 2-4 MV
- STAR (2 MV) at ANSTO


$V \le 1 MV$

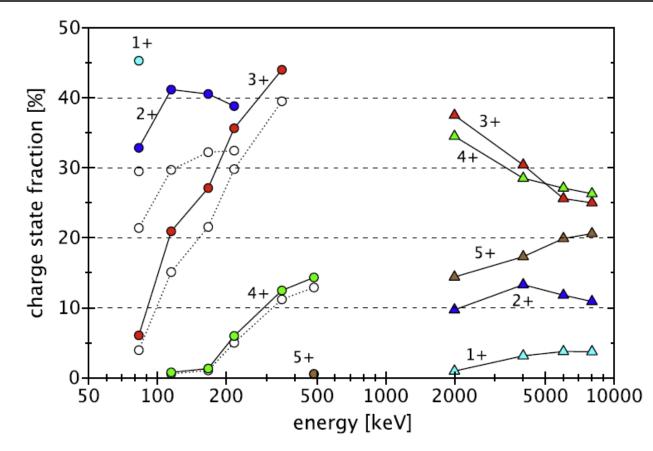
- VEGA (1 MV) at ANSTO
- SSAMS (0.25 MV) at ANU

Tranformative developments

 Silicon nitride foils for detector windows and degraders. Thickness down to 30 nm, area 8x8 mm². Extremely uniform.

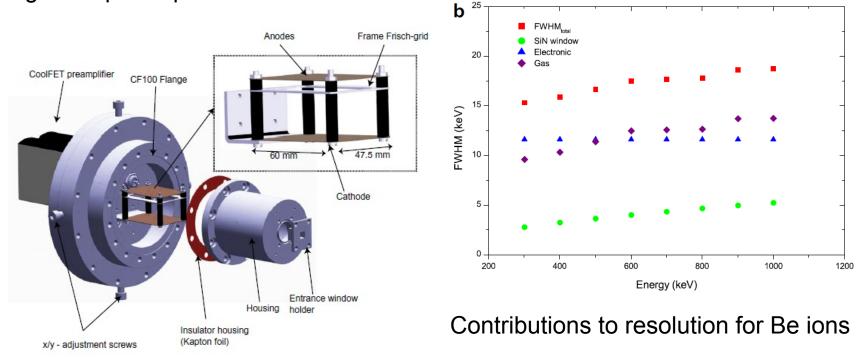
Manufactured by Silson in UK

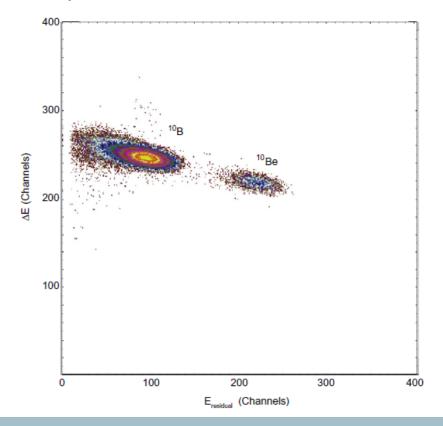
2. Helium stripping.


• Less scattering than argon.

E.g. for the SSAMS at ANU , $^{14}\mathrm{C}$ transmission from 34% to 48% when switched from argon to helium.

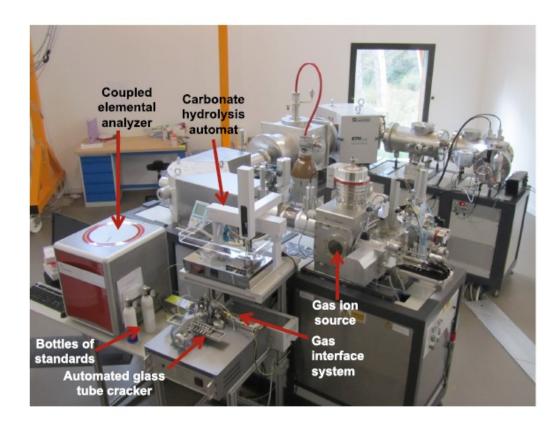
• Higher stripping yield in high charge states.


E.g. $U^{3+} > 40\%$ at 0.3 - 1 MeV. Exploited by new ANSTO 1 MV system (VEGA).

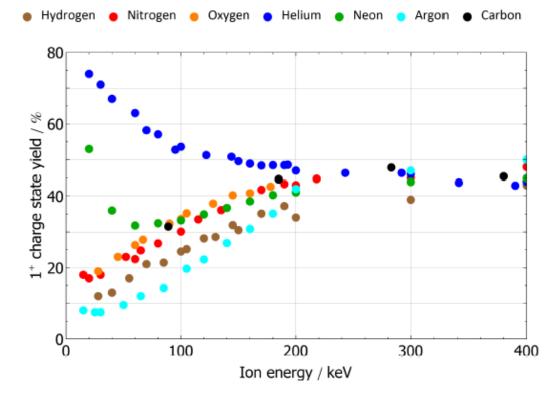


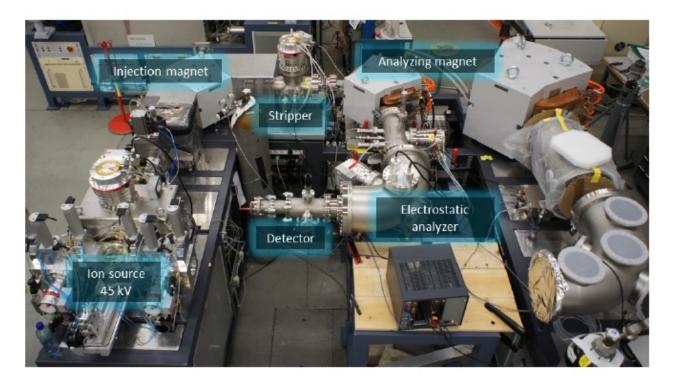
3. Ionisation detector developments – silicon nitride foils and low-noise via design and preamps. ⁹Be

Separation of 750 keV ¹⁰Be and ¹⁰B



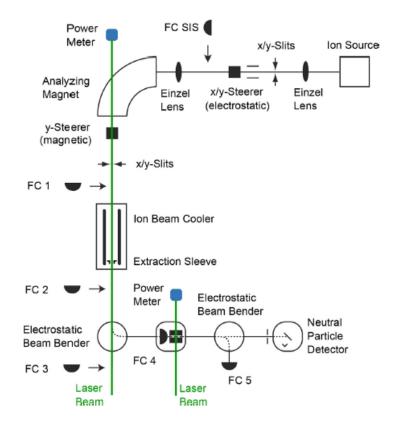
4. CO₂ gas sources for ¹⁴C


- Allows very small samples (<5 μ g) compound specific ¹⁴C.
- May be coupled to automated CO₂ production systems. E.g. elemental analyser for charcoal, 'gas bench' for carbonates, laser ablation.


MICADAS system at CEREGE, Aix-en-Provence, France

Yield of 1⁺ 'carbon' ions after stripping in various gases as function of energy

myCADAS – AMS without the 'A'



Isobar separation prior to the accelerator

A. Photo-detachment. Vienna.

Electron affinities: ${}^{36}Cl^{-} - 3.62 \text{ eV}$ ${}^{36}S^{-} - 2.08 \text{ eV}$ Nd:YAG laser 532 nm = 2.33 eV

Long interaction time by decelerating and then cooling negative ions to eV energies in He gas in RFQ.

B. Electron transfer reactions. Ottawa.

At eV energies ${}^{36}S^- + NO_2 \rightarrow {}^{36}S + NO_2^-$ Rate constant 1.3x10⁻⁹ cm³/s

 ${}^{36}\text{Cl}^-$ + NO₂ \rightarrow ${}^{36}\text{Cl}$ + NO₂⁻ Rate constant <6x10⁻¹² cm³/s

Again, use gas-filled RFQ to cool beam to eV energies.

A multi-isotope AMS system at only 300 kV? ETH

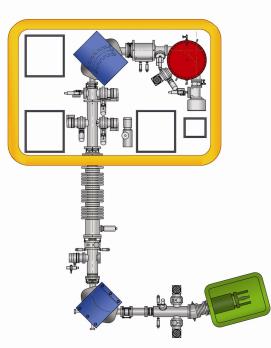
MICADAS accelerator successfully scaled up to 300 kV

Problems with helium as stripper gas have been solved

Ultra-thin and ultra-uniform silicon nitride foils available

Second magnet in HE analysis system reduces background

Detectors are good enough to separate 450 keV ¹⁰Be from ¹⁰B


¹⁰Be, ²⁶Al, ⁴¹Ca, ¹²⁹I, actinides (^{239,240,242,244}Pu, ²³⁶U, ²³⁷Np)

And Thanks

Single Stage Accelerator Mass Spectrometer - SSAMS

Applications:

¹⁴C

- Archaeology
- Chronologies marine and lake cores for palaeoclimate reconstruction
- Environmental tracing much uses 'bomb pulse'
 - \circ Oceanography
 - Carbon cycle soils
- Biomedicine drug testing

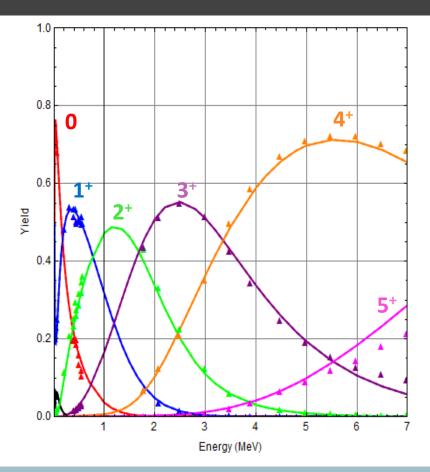
¹⁰Be ($T_{\frac{1}{2}}$ 1.4 Ma) and ²⁶Al (0.7 Ma) – 'Cosmogenic' isotopes

- 'Exposure dating' glacial advance and retreat, river and wave-cut terraces, landslides. Palaeoclimate and landscape evolution
- Erosion landscape evolution
- Chronologies of marine crusts and cores beyond ¹⁴C

³⁶Cl (0.3 Ma)

- Exposure dating and erosion
- Hydrology dating and tracing groundwater
- Artificial tracer oil field tracing

Actinides – Plutonium and ²³⁶U


- Human-induced erosion.
- Tracing of releases from accidents and reprocessing
- Oceanography

Isotopes for nuclear astrophysics:

- ⁶⁰Fe produced in supernova and deposited on earth. Sensitivity ⁶⁰Fe/⁵⁶Fe < 10⁻¹⁶ required. Needs gas-filled magnet and high energy (170 MeV) to discriminate against ⁶⁰Ni.
- Cross-sections for reactions of astrophysical importance, e.g. ⁹²Zr(n,γ)⁹³Zr. Irradiate ⁹²Zr at a neutron facility, e.g. SARAF in Israel, and measure the ⁹³Zr produced by AMS. High-energy and GFM to discriminate against ⁹³Nb.

Charge state distribution for carbon ions in argon gas.

