Trends in Accelerator Mass Spectrometry (AMS)

Keith Fifield
Department of Nuclear Physics
ANU
15 MV 14UD accelerator at ANU

Mini Radiocarbon dating system (MICADAS)
2.5m x 3.0m

MICADAS – ETH Zürich

Negative Ion Source
Mass analysing magnet - bounced

Ion detector

+ve ion analysis Magnet + ESA
He gas stripper
Tandem accelerator 200 kV

22 m
Essential features of an AMS system

1. **Negative ion source** – can provide discrimination against isobars. E.g. $^{14}\text{C}^-$ and $^{26}\text{Al}^-$ are stable, whereas $^{14}\text{N}^-$ and $^{26}\text{Mg}^-$ are not.

2. **Dissociation of molecules**, e.g. $^{13}\text{CH}^-$, $^{12}\text{CH}_2^-$, and conversion to positive ions so that subsequent analysis selects only ^{14}C. Requires acceleration to sufficient energy for high yield of positive ions.

3. Where the ion source does not provide isobar discrimination, e.g. ^{36}Cl and ^{36}S, further acceleration to an energy at which ion identification techniques from nuclear physics can be used.
AMS’s debt to Nuclear (and Atomic) Physics

• Negative ion sources
• Tandem electrostatic accelerators, including foil and gas strippers
• Detectors – ionization chambers, silicon detectors, TOF
• Isobar separation techniques – absorbers, degraders, gas-filled magnet.
• Measurements of charge state distributions and charge-changing cross sections

Not all one way, however: AMS → Nuclear Physics

• Ion source development
• Gas stripper development
• Automation
• 107 facilities in total
• 64 used for 14C only.
Notes:

- $V = 4 - 6$ MV – versatile. Can do most isotopes.

- $V = 2 - 4$ MV – versatile, but many used only for 14C.
Notes
1. SSAMS and MICADAS – 14C only.
2. Others more versatile – 10Be, 26Al, 41Ca, 129I, actinides (Pu, 236U).
In Australia:

V>7 MV:
• 14UD (15MV) at ANU
• ANTARES (9 MV) at ANSTO

V = 4-6 MV
• SIRIUS (6 MV) at ANSTO

V = 2-4 MV
• STAR (2 MV) at ANSTO

V ≤ 1 MV
• VEGA (1 MV) at ANSTO
• SSAMS (0.25 MV) at ANU
Tranformative developments

1. **Silicon nitride foils** for detector windows and degraders. Thickness down to 30 nm, area 8x8 mm2. Extremely uniform.

Manufactured by Silson in UK
2. Helium stripping.
 • Less scattering than argon.
 E.g. for the SSAMS at ANU, 14C transmission from 34% to 48% when switched from argon to helium.
 • Higher stripping yield in high charge states.
 E.g. $U^{3+} > 40\%$ at 0.3 - 1 MeV. Exploited by new ANSTO 1 MV system (VEGA).
3. **Ionisation detector developments** – silicon nitride foils and low-noise via design and preamps.

![Diagram of ionisation detector](image)

Contributions to resolution for Be ions

- **FWHM**
 - ^{9}Be

![Graph showing contributions to resolution](image)
Separation of 750 keV ^{10}Be and ^{10}B
4. **CO₂ gas sources** for ¹⁴C

- Allows very small samples (<5 µg) – compound specific ¹⁴C.
- May be coupled to automated CO₂ production systems. E.g. elemental analyser for charcoal, ‘gas bench’ for carbonates, laser ablation.
MICADAS system at CEREGE, Aix-en-Provence, France
Yield of 1^+ ‘carbon’ ions after stripping in various gases as function of energy
myCADAS – AMS without the ‘A’
Isobar separation prior to the accelerator

A. Photo-detachment. Vienna.
Electron affinities:
\[^{36}\text{Cl}^- - 3.62 \text{ eV} \]
\[^{36}\text{S}^- - 2.08 \text{ eV} \]

Nd:YAG laser 532 nm = 2.33 eV

Long interaction time by decelerating and then cooling negative ions to eV energies in He gas in RFQ.

At eV energies

\[
{^{36}\text{S}^-} + \text{NO}_2 \rightarrow {^{36}\text{S} + \text{NO}_2^-}
\]
Rate constant \(1.3 \times 10^{-9} \text{ cm}^3/\text{s}\)

\[
{^{36}\text{Cl}^-} + \text{NO}_2 \rightarrow {^{36}\text{Cl} + \text{NO}_2^-}
\]
Rate constant \(<6 \times 10^{-12} \text{ cm}^3/\text{s}\)

Again, use gas-filled RFQ to cool beam to eV energies.
A multi-isotope AMS system at only 300 kV? ETH

MICADAS accelerator successfully scaled up to 300 kV

Problems with helium as stripper gas have been solved

Ultra-thin and ultra-uniform silicon nitride foils available

Second magnet in HE analysis system reduces background

Detectors are good enough to separate 450 keV 10Be from 10B

10Be, 26Al, 41Ca, 129I, actinides (239,240,242,244Pu, 236U, 237Np)
That's all Folks!

And Thanks
Single Stage Accelerator Mass Spectrometer - SSAMS
Applications:

^{14}C

- Archaeology
- Chronologies – marine and lake cores for palaeoclimate reconstruction
- Environmental tracing – much uses ‘bomb pulse’
 - Oceanography
 - Carbon cycle – soils
- Biomedicine – drug testing
10Be ($T_{1/2}$ 1.4 Ma) and 26Al (0.7 Ma) – ‘Cosmogenic’ isotopes
- ‘Exposure dating’ – glacial advance and retreat, river and wave-cut terraces, landslides. Palaeoclimate and landscape evolution
- Erosion – landscape evolution
- Chronologies of marine crusts and cores beyond 14C

36Cl (0.3 Ma)
- Exposure dating and erosion
- Hydrology – dating and tracing groundwater
- Artificial tracer – oil field tracing
Actinides – Plutonium and 236U

- Human-induced erosion.
- Tracing of releases from accidents and reprocessing
- Oceanography

Isotopes for nuclear astrophysics:

- 60Fe – produced in supernova and deposited on earth. Sensitivity 60Fe/56Fe < 10^{-16} required. Needs gas-filled magnet and high energy (170 MeV) to discriminate against 60Ni.
- Cross-sections for reactions of astrophysical importance, e.g. 92Zr(n,γ)93Zr. Irradiate 92Zr at a neutron facility, e.g. SARAF in Israel, and measure the 93Zr produced by AMS. High-energy and GFM to discriminate against 93Nb.
Charge state distribution for carbon ions in argon gas.