

Study of ⁹Li-alpha cluster states in ¹³B using the Resonant Scattering Method

J.P. Fernandez-Garcia^{1,6}, A.Di Pietro¹, M. Alcorta², M.J.G.Borge^{3,4}, T. Davinson⁵, P. Figuera¹, M.Fisichella¹, A.M.Laird⁷, M.Lattuada^{1,6}, A.C.Shotter^{2,5}, N. Soic⁷, O. Tengblad⁴, D. Torresi^{1,6}, M.Zadro⁷

1-INFN-Laboratori Nazionali del Sud, Catania, Italy
2-TRIUMF-Canada,
3-ISOLDE-CERN,
4-CSIC-Madrid, Spain
5-University of Edinburgh UK
6-Universita' di Catania Italy
7-University of York UK
8-Rudjer Boskovic Institute, Zagreb, Croatia

- >The experimental technique: Inverse kinematics thick target method
- ≻The ⁹Li+⁴He at TRIUMF

Outline

≻Conclusions

Cluster structure is a well established feature of many light N≈Z nuclei both in their ground and excited states.

Weak coupling picture:

- Clusters are formed by tightly bound nucleons (cluster is stiff, i.e. not easy to excite);
- 2. Weakly coupled inter-cluster motion is considered.

Threshold rule: i.e. these states appear close to the threshold for breaking-up into the cluster constituents.

K. Ikeda et al. Supp.Progr.Theo.Phys. 68(1980)1

In n-rich nuclei the condition that the cluster must be a stiff particle (e.g α particle) is dropped. Antisymmetrized Molecular Dynamics calculations (AMD) predicts the existence of cluster configuration of Li-He type in B isotope.

Y. Kanada-En'yo and H. Horiuchi Prog. Theor. Phys. Supp.142(2001)205 and Kanada En'yo et al PRC 52 (1995) 647

AMD calculations

Y. Kanada En'yo et al. Prog. Theor. Phys. 120(2008)917

Thick Target Inverse Kinematics scattering method

K.P.Artemov et al. Sov.J.Nucl.Phys. 52(1990)408 K. Kallman et al., Nucl. Instr. And Meth. in Phys. Res. A338, (1994) 413

ADVANTAGE

- > Wide energy range of measurements with a single beam energy.
- It is possible to measure at 0° (⁹Li at 180° in centre of mass frame): the best condition to study resonances in the elastic scattering.

DISADVANTAGE

- > Precise knowledge of stopping power needed.
- > Limits on the width of the states that can be measured, because of low resolution.

> Background \Rightarrow radioactive decay of the beam, inelastic scattering and reaction events. From α or Hydrogen spectra no possibilities to discriminate different reaction processes.

Time measurement

Calculations of Time $vs \Delta E$ for a ΔE thickness=50µm Elastic, inelastic and some reaction process are considered

Excitation function ${}^{9}\text{Be}{}^{+4}\text{He}$ at $E_{cm} < 4.5 \text{MeV}$

< Excitation function ${}^{9}\underline{\text{Be}} + \alpha$ with resonance scattering method. M. Zadro et al, NIM B259 (2007).

— Excitation function $\underline{\alpha+}^{9}\underline{Be}$ measured with thin target method varying beam energy at small streps J. Liu [NIM B 108,(1996) 247], J.D. Goss [PRC 7,(1973) 247]

dE/dx measured

Cluster states in ¹³B: ⁹Li+α at TRIUMF

⁹Li+⁴He @ TRIUMF

Uncorrelated α and β particles coming from ⁹Li radioactive decay. Due to the large size of the detectors β particles release large energy in both ΔE and E detectors. α -energy not sufficient to punch-through the ΔE

Total-energy spectra for α -particles punching through ΔE detectors ($E_{tot} = \Delta E + E$)

¹³B Excitation function

➤The existence of exotic cluster configurations is predicted by AMD calculations in n-rich B isotopes, including the closed shell nucleus ¹³B.

> Resonant scattering of light nuclei powerful tool to investigate cluster structures.

➤ Use of extended targets + ToF allows discrimination of reaction processes.

➤Important precise knowledge of stopping power. Measured stopping power used in the present analysis.

>⁹Li+⁴He excitation function shows presence of structures at high excitation energy. Possible ¹³B α-cluster states? R-Matrix analysis needs to be performed.