M.A. Famiano

Introduction

- Screening in Nuclear Reactions Strong and Weak Screening
- Relativistic Electron-Positron Plasmas
- Comparison of Relativistic and Classical Screening
- Screening With Relativistic Plasmas
- Results BBN White Dwarfs: Type Ia Stellar Interiors PP SNe X-Ray Burst Other Regimes Other Regimes Other Effects o the Relativistic Plasma

Conclusions

Relativistic Electron-Positron Plasma Screening In Astrophysical Environments Enhancements to Weak and Intermediate Screening

M.A. Famiano ^{1,2}, A. Baha Balantekin ³, T. Kajino ^{2,4}

¹Western Michigan University, ²National Astronomical Observatory of Japan, ³University of Wisconsin ⁴University of Tokyo

15 September 2016

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

M.A. Famiano

Introduction

Screening in Nuclear Reactions Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

1 Introduction

Screening in Nuclear Reactions Strong and Weak Screening

2 Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

3 Screening With Relativistic Plasmas

4 Results

BBN White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

5 Conclusions

Outline

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors PP SNe X-Ray Burst Other Regimes Other Effects o the Relativistic Plasma

Conclusions

Review: Nuclear Screening

Assume constant electron background. Salpeter approximation assumes constant energy shift.

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Review: Nuclear Screening

$$V(r) = \frac{Z_1 Z_2 e^2}{r} + \tilde{U}(r)$$
$$\Gamma_{12} \propto \int_0^\infty E^{1/2} e^{-E/kT} \times \frac{\sigma(E - U_0) dE}{r}$$

Assume constant electron background. Salpeter approximation assumes constant energy shift.

Approximate turning-point (fm) vs particle energy in screened and unscreened case.(C+C)

Energy shift changes classical turning point in a Coulomb potential.

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-

Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs Type Ia Stellar Interio PP SNe X-Ray Burst Other Regim Other Effects the Relativist Plasma

Conclusions

Review: Strong and Weak Screening Regimes

Weak Screening

10

Salpeter Approximation Shift in energy changes classical turning point.

$$\begin{split} E_C \ll kT \\ V(r)_{scr} &\rightarrow V_0(r) e^{-r/\lambda_D} \\ \Gamma_{scr} &\rightarrow e^{-U_0/kt} \Gamma_0 \\ \lambda_D &= \left(\frac{T}{4\pi e^2 n \sum_i (Z_i + Z_i^2) Y_i}\right)^{1/2} \end{split}$$

- Debye-Huckel Screening: Poisson Equation to first order.
- NOTE: Corrections to the ion-sphere model may result in potential shifts ~ a few percent.

Strong Screening

$$\begin{split} & E_C \gtrsim kT \\ & U_0 \propto \left[(Z_1 + Z_2)^{5/3} - Z_1^{5/3} - Z_2^{5/3} \right] \\ & \times \frac{\rho}{M_{12}}T \end{split}$$

lons approach a lattice-like configuration.

イロト 不得 トイヨト イヨト

Relativistic Electron-Positron Plasmas

Relativistic Plasmas

 \sim

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Screening of reaction rates using e^-e^+ plasmas.

Schwinger-Dyson equation for photon propagator.

 $\left|\frac{\pi^2}{\lambda_{\rm D}^2} = e^2 \frac{\partial}{\partial \mu} \int_0^\infty dp p^2 \left[\frac{1}{e^{(E-\mu)/T} + 1} - \frac{1}{e^{(E+\mu)/T} + 1}\right] \overset{\bullet}{\searrow}$ Screening potential at close range $V_{C}^{
m scr}(r\ll\lambda_{D})\sim V_{C}^{
m bare}-rac{Z_{1}Z_{2}e^{2}}{\lambda_{D}}=V_{C}^{
m bare}-E_{0}$ High Temperature Limit

$$E_0(T \gtrsim m_e) = \frac{Z_1 Z_2 e^3}{\pi} \left[\mu^2 + \frac{\pi^2}{3} T^2 \right]^{1/2}$$
$$\sigma(E) \rightarrow \sigma(E + E_0)$$

M.A. Famiano

Introduction

Screening in Nuclear Reactions Strong and

Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Energy shift could be important for low-lying resonances. $Z_1 = 2, Z_2 = 4$

1.2 1.4 1.6 1.8

• e^+e^- plasma

0.2 0.4 0.6 0.8

22F

20

E₀ (keV)

T→0.5-1 MeV

Electron number density

modified by pair production

Relativistic Plasmas

10⁹ = 0 MeV 10⁸ 2 MeV 10 չը (fm) 10 10 10 10-1 T (MeV) ³⁰ ²⁵ ²⁰ ¹⁵ ¹⁰

T=1 MeV, μ =0

[Famiano, Balantekin, & Kajino (2016)]

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Comparison of classical and relativistic Debye lengths. Assume C+C plasma. Classical Debye Length:

$$\lambda_D = \left(\frac{T}{4\pi e^2 n\xi}\right)^{1/2}$$

$$\xi = \sum_i \left(Z_i^2 + Z_i\right) Y_i$$

Relativistic Effects

Example: Neutral ¹²C Plasma

Approximate Screening Regimes

- Strong screening: ions "locked" into a lattice.
- Wigner-Seitz spheres.
- Ion-sphere approximation.

イロト イポト イヨト イヨト

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

10^{4} 10^{4} 10^{6} 10^{9} 10^{2} 1

Comparison of classical and relativistic Debye lengths. Assume C+C plasma. Classical Debye Length:

$$\lambda_D = \left(\frac{T}{4\pi e^2 n\xi}\right)^{1/2}$$

$$\xi = \sum_i \left(Z_i^2 + Z_i\right) Y_i$$

Relativistic Effects

Example: Neutral ¹²C Plasma

Where might relativistic screening be appropriate? How the intermediate screening region is handled can be quite important.

(日)、

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Comparison of classical and relativistic Debye lengths. Assume C+C plasma. Classical Debye Length:

$$\lambda_D = \left(\frac{\tau}{4\pi e^2 n\xi}\right)^{1/2}$$

$$\xi = \sum_i \left(Z_i^2 + Z_i\right) Y_i$$

Relativistic Effects

Example: Neutral ¹²C Plasma

For WD ignition we will need quantum plasma physics.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic an Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Relativistic Effects

Example: Neutral ¹²C Plasma

For WD ignition we will need quantum plasma physics.

Comparison of classical and relativistic Debye lengths. Assume C+C plasma. Classical Debye Length:

$$\lambda_D = \left(\frac{T}{4\pi e^2 n\xi}\right)^{1/2}$$

$$\xi = \sum_i \left(Z_i^2 + Z_i\right) Y_i$$

M.A. Famiano

Introduction

Screening in Nuclear Reactions Strong and Weak Screening

Relativistic

Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results RBN

White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Not

Note the ⁷Be \rightarrow ¹⁰C branch.

Could a resonance here be

significant?

[Broggini et al. (2012), Hammache et al. (2013)]

Results for BBN

- Very small effects
- Low Z
- More massive nuclei not produced until $T \lesssim 0.5$ MeV

・ロト ・ 雪 ト ・ ヨ ト

э

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results RBN

White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Resonances in ⁷Be+³He

T=1 MeV

- Resonances \lesssim 500 keV ruled out [Hammache et al. (2013)].
- TRRs including resonances are small in this regime.
- Shifts in resonances indicated above.
- Possible effect for sub-threshold resonances.

M.A. Famiano

Introduction

Screening in Nuclear Reactions

Strong and Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results RBN

White Dwarfs: Type Ia Stellar Interiors: PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Astrophysical Sites Where Plasma Screening Could Be Important

- r-Process screening effects
- x-Ray burst frequency changes
- x-Ray burst light curve changes
- More work to follow

exp(log L):t*3.15e7

x-Ray bursts light curves [PRELIMINARY].

M.A. Famiano

Introduction

Screening in Nuclear Reactions Strong and

Weak Screening

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type Ia Stellar Interiors PP SNe X-Ray Burst Other Regimes Other Effects of the Relativistic Plasma

Conclusions

Conclusions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Explored relativistic plasma effects in BBN.
- Continuing to work on dynamics in:
 - r-Process
 - WD
 - x-Ray bursts
 - Massive stellar cores
- One really has to be careful in the intermediate screening region.

Work supported by NSF PHY-1204486 and PHY-1064280 and NAOJ Visiting Professorship

M.A. Famiano

Introduction

Screening in Nuclear Reactions Strong and Weak Screenin

Relativistic Electron-Positron Plasmas

Comparison of Relativistic and Classical Screening

Screening With Relativistic Plasmas

Results BBN White Dwarfs: Type la Stellar Interiors PP SNe X-Ray Burst Other Regimes Other Effects o the Relativistic Plasma

Conclusions

Clayton, D.D., *Principles of Stellar Evolution and Nucleosynthesis*, The University of Chicago Press 1968

Broggini et al., JCAP 06, 30 (2012)

Famiano, M.A., Balantekin, B., & Kajino, T., Phys. Rev. C 93, 045804 (2016)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Hammache, F. et al., Phys. Rev. D 88, 062802 (2013)