

Baryon Asymmetry of the Universe

Observed: $(n_{B} - n_{\overline{B}}) / n_{\gamma} = 6 \cdot 10^{-10}$ **SM Expected:** $(n_{B} - n_{\overline{B}}) / n_{\gamma} \sim 10^{-18}$

WMAP+COBE, 2003

Baryon Asymmetry of the Universe

Three conditions (A.Sakharov JETP Lett. 5,24)

- Baryon number conservation is violated
- Violation of $CP \leftrightarrow T$ Violation (since TPC holds)
- A non thermalized system

The Time Reversal Invariance Experiment at COSY (TRIC) Physics Beyond the SM

Consider T violation (with and without P conservation):

EDM and TRIC probe different extensions of the SM

3

What kind of experiment is performed ?

5.9 MeV Neutron Transmission Experiment through ¹⁶⁵Ho

Observable: $\vec{p} \cdot (\vec{\sigma}_1 \times \vec{\sigma}_2) (\vec{p} \cdot \vec{\sigma}_2)$

J.E.Koster et al., Phys. Rev. C 49 (1994) 710

Since the tensor polarization in ¹⁶⁵Ho is generated by one valence nucleon, the effect is diluted by the other 164 nucleons

Therefore:

Restrict experiment to most simple Spin¹/₂ – Spin1 system, i.e. $\vec{p} - \vec{d}$ scattering at COSY (as an internal experiment)

The Time Reversal Invariance Experiment at COSY (TRIC) Beam Energy for TRIC

M. Beyer NPA 560 (1993) 895

Yu. Uzikov PRC 92 (2015) 014002

Two independent theoretical calculations suggest to perform TRIC below 200 MeV

D.Eversheim INPC2016, Adelaide

The Time Reversal Invariance Experiment at COSY (TRIC) What are the Goals for TRIC ?

- (Most) accurately probe TRI (T-odd, P-even) in nuclear matter
- Dynamics independent; especially: Not sensitive to Final State Interaction (FSI)
- Only dependent on the structure of the reaction matrix as determined by general conservation laws "True test of TRI"
- Simple reaction (Two particles in \rightarrow two particles out)

The Time Reversal Invariance Experiment at COSY (TRIC) What is the Goal for TRIC ?

But:

There is no such TRI Null-Test for any reaction in atomic nuclear or elementary physics

F.Arash, M.J. Moravcsik and G.R. Goldstein, Phys.Rev.Lett. **54** (1985) 2649 M.Simonius, Phys. Rev. Lett. **78** (1997) 4161

Loophole: Proof holds for bilinear observables only.

H.E. Conzett, "7th Int. Conf. on "Pol. Phen. Nucl. Phys.", Paris (1990) 2D

Measure forward scattering amplitude and thus total cross sections via the Optical Theorem

Measure total
$$A_{y,xz}$$
 in $\vec{p} - \vec{d}$ scattering

The Experimental Setup

External Fixed Target

Scattering-Cones and Detector-Sensitivity

Detector Wall

The Experimental Setup

The Time Reversal Invariance Experiment at COSY (TRIC) The Principle Idea of the Experimental Setup

The Principle of the Time Reversal Invariance test at COSY (TRIC)

Principal Error Analysis

Involved Spins: $\frac{1}{2} + 1 \rightarrow \frac{1}{2} + 1$

Line cancels because of :

Protonspinflip p_x, p_z negligible for protons

Quantity cancels because of :A,P

11

Some Experimental Details

is the time interval between two consecutive current		
measurements on a slope [s]		
is the spin flip period of the target [h]		
is the total measuring time [h]		
is the error of the current measurement in the interval Δt [A]		

When are these accuracies equal ? $\delta A_{y,xz}^{\text{meas}} = \delta A_{y,xz}^{\text{shot}}$ $h_{\min} \propto \delta I$

Some Experimental Details

P. Lenisa and F. Rathmann CERN-SPSC-2012-013/SPSC-SR-099

13

First Test of the Novel Measurement Method

BCT-response run

Preliminary result:

$$A_{y,y}(\vec{p} - \vec{d}) = 0.06 \pm 0.09$$

- TRIC probes physics beyound the SM
- The TRIC experiment at COSY constitutes a precision transmission T-odd, P-even True TRI Null-Test
- For the TRIC experiment COSY serves as accelerator, ideal forward spectrometer and detector
- COSY is ready for the TRIC experiment

Thank You

16

The Time Reversal Invariance Experiment at COSY (TRIC) CP/T Violation in Early Universe

New CP/T violation beyond the SM must exist !

The Experimental Setup

D.Eversheim INPC2016, Adelaide

universität**bonn**

The Experimental Setup

D.Eversheim INPC2016, Adelaide

HISKP

universität**bonn**

Some Experimental Details

TRIĆ

Fast Current Transformer (FCT):

• With the **FCT** we can detect **down**

to 40 000 protons stored in COSY

- Commercial device (Bergoz)
- Sensor for bunched beam

Readout Electronics:

- Lock-In-Amplifiers
- High resolution ADC

The Experimental Setup

The total pol. correlation $A_{y, xz}$ is measured via the forward scatt. amplitude $\mathcal{F}(0)$

$$\sigma_{\text{tot}} = \frac{4\pi}{k} \operatorname{Im} F(0) \qquad \longrightarrow \qquad \frac{4\pi}{k} \operatorname{Im} \text{tr} \left(\rho \mathcal{F}(0) \right)$$

F(0) - Forward scatt. amplitude for unpolarized particles

- P Density matrix
- $\overline{\mathcal{M}}(0)$ Forward scatt. amplitude (matrix) for polarized particles

A_{y, xz} is proportional to the relative difference of the current slopes of the circulating proton beam with respect to the chosen polarization configuration (+/-) of the proton beam and deuteron target.

1) COSY BCT σ_1 =0.5µA/ \sqrt{Hz} 2) NPCT Bergoz σ_1 =0.3µA/ \sqrt{Hz} 3) CCC GSI σ_1 =0.25nA/ \sqrt{Hz} 4) ICT Bergoz σ_I =1nA/ \sqrt{Hz}

5) ICT Bergoz/CRYRING σ_I =0.1nA/ \sqrt{Hz}

In 2014 at the PAX target place will be available:

Atomic Beam Source and Breit-Rabi Polarimeter will be capable to operate with deuterium

Opennable storage-cell for highly polarized target density

Holding field system to preserve and flip the target polarization during a measurement cycle

 $\Box \phi$ - symmetric multipurpose PAX detector for beam and target polarimetry

Injection, cooling at Inj., Acceleration

COSY can provide as with a beam through the PAX storage cell

Final State Interaction

Concerning FSI: Reading the Optical Theorem carefully: $\frac{4\pi}{k} \operatorname{Im} F^{el}(0^{\circ}) = \sigma_{tot}^{el} + \sigma_{tot}^{inel}$

Has been proven by R.M. Ryndin

(proceeding of 3rd LNPI Winter School, *Test of T-invariance in strong interactions*), the idea of the proof can be found in: *V. Gudkov and Young-Ho Song*, *arXiv:1110.1279vl [nucl-th] 6Oct 2011*

Unitarity
$$\longrightarrow$$
 Optical Theorem \longrightarrow $F_i(0^\circ) = F_f(0^\circ) \longrightarrow$ Unitarity

27

Final State Interaction

$$\frac{4\pi}{k} \operatorname{Im} F^{\text{el}}(0^{\circ}) = \sigma_{\text{tot}}^{\text{el}} + \sigma_{\text{tot}}^{\text{inel}}$$

For all inelastic processes the following conditions have to be fulfilled by the (FSI) scattered particles in order to be transported by COSY:

1)

11)

- The e/m has to be that of a proton to 10^{-4}
- The momentum p has to match to at least 10⁻⁴
- iii) The scattering angle ϑ must not exceed a few mrad

The phase space is considered to be virtually Zero

TRI and **Parity** Tests

γ – γ Detailed Bal	correlation in 57 Fe in p + 27 Al $\Leftrightarrow {}^{4}$ He + 24 Mo	$\overline{\alpha}_{\chi} \leq 5 \cdot 10^{-6}$ $\overline{\alpha} \leq 10^{-3}$	
Detailed Dai.	mp + m · me + mg		
Р-А	in p - p scattering	$\overline{g}_{\chi} \leq 3 \cdot 10^{-2}$	
Neutron EDM		$\overline{g}_{TP} \leq 10^{-11}$	$\overline{g}_{\rho \chi} \leq 1.5 \cdot 10^{-3}$
Atomic EDM	in ¹⁹⁹ Hg		$\overline{g}_{oT} \leq 1 \cdot 10^{-2}$
CSB	ΔA for \vec{n} - p and \vec{p} - n scatt.		$\overline{g}_{\rho \chi} \leq 6.7 \cdot 10^{-3}$
n - transm.	through 165 $\vec{H}o$	$\overline{g}_{\chi} \leq 2.8 \cdot 10^{-4}$	$\overline{g}_{\rho \mathbf{T}} \leq 2.3 \cdot 10^{-2}$

Null-tests

 A_L in \vec{p} -p scattering($\delta A \sim 2 \cdot 10^{-8}$) $A_{y,xz}$ in \vec{p} - \vec{d} scattering(potentially $0.1 \cdot \overline{g}_{\rho \mathbf{X}}$ of

 $\overline{\alpha}_{\chi}$ Strength of eff. T-violating N-core potential $\overline{g}_{\chi/\chi}$ Strength of T-violating / TP-violating NN potential $\overline{g}_{\rho\chi}$ Strength of T-violating ρ -MN coupling constant

The Time Reversal Invariance Experiment at COSY (TRIC) Parity Violation

Why can $A_{\underline{z}}$ be measured to the 10⁻⁷ level?

- A_z measurement is a **Null-Experiment.**
- Signature of A_z is unique compared to other observables.
- As A_z is a polarization observable, it is a **relative measurement**.

In addition:

- **Reduce sensitivities** to errors by proper set-up/alignment.
- Reduce "error amplitudes" by **feedback control**.
- **Correct** for remaining errors.
- Convince yourself by measurement, that error contributions thought to be negligible, are negligible.
- Is the reduced χ^2 after all corrections close to 1?

The Time Reversal Invariance Experiment at COSY (TRIC) Parity Violation

The Time Reversal Invariance Experiment at COSY (TRIC) Defining the Goal for TRIC

W.C.Haxton. Antje Höring and M.J. Musolf, Phys.Rev. D50 (1994) 3422

32

Defining the Goal for TRIC

Experiment: From $A_5 = 8.6 \pm 7.7 \cdot 10^{-6}$ gives:

 $\overline{g}_{\rho T}$: 2.3 ± 2.1 · 10⁻²

P.R. Huffmann et al., Phys.Rev. C55 (1997) 2684

33

Some Experimental Details

The error in the TRI sensitive observable A_{y,xz} depends on :

 The accuracy with which the current of circulating protons are measured
 The number of turns of the proton beam through the target

$$\Delta T_{y,xz} = \frac{T^{+} - T^{-}}{T^{+} + T^{-}} = \frac{\exp(-(\chi^{+}) - \exp(-(\chi^{-})))}{\exp(-(\chi^{+}) + \exp(-(\chi^{-})))}$$

 $\begin{array}{lll} \mbox{with:} & T^+ & -\mbox{Transmission factor for the proton-deuteron spin-configuration} \\ & \mbox{with } P_y \cdot P_{xz} > 0 \\ T^- & -\mbox{Transmission factor for the time reversed situation, i.e.} \\ & P_y \cdot P_{xz} < 0 \\ \chi^{+/-} & -\mbox{Is the product of the factors } (\sigma_{tot} \cdot \varrho d \cdot n) \mbox{ with respect to the} \\ & \mbox{proton-deuteron spin-alignment} \end{array}$

$$\Delta T_{y,xz} = -\sigma_o \varrho d \mathbf{n} P_y P_{xz} A_{y,xz} = :- \mathbf{S} A_{y,xz}$$

with:S- Is the sensitivity of the experiment with respect to An- Number of turns the beam takes through the target

Outline

- Why is this experiment interesting ?
- What do we measure ?
- How do we measure ?
- Some Tricks of TRIC
- Summary

