Experimental research on Quark Gluon Plasma with relativistic heavy-ion collisions at RHIC

ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba Center for Integrated Research in Fundamental Science and Engineering (CiRfSE)

Contents

- Collective flow
- Jet quenching
- Correlation & fluctuation
- Beam energy dependence (Critical point)

PHENIX experiment

STAR experiment

PHOBOS experiment BRAHMS experiment

QGP at RHIC, INPC2016, 11-16/Sep, Adelaide, Australia

⁴

pressure gradient from asymmetric system : Non-zero v_1 at $\eta \sim 0$

Possible E-field effect : Charge dependent v_1 $\Delta v_1 = v_1 \{h^+\} - v_1 \{h^-\}$

beam view

5

QGP at RHIC, INPC2016, 11-16/Sep, Adelaide, Australia

ShinIchi Esumi, CiRfSE, Univ. of Tsukuba

In procomsions with facilities particles at civis

Elliptic flow (v_2)

- hadron mass dependence from hydro - quark number scaling from coalescence

Passage time: ~ 0.15 fm/c

0.5 1 KE_T/n_a (GeV)

π[±]

🔺 K[±]

■ (d)

(p) p

÷ Ø Hadron

QGP

Phys. Rev. Lett. 99 (2007) 052301

1.5

QGP at RHIC, INPC2016, 11-16/Sep, Adelaide, Australia

Flow and quenching of heavy quarks

Heavy-Flavor Tracker (HFT) upgrade at STAR

QGP at RHIC, INPC2016, 11-16/Sep, Adelaide, Australia

Silicon Vertex Detector (VTX) upgrade at PHENIX

Higher order event anisotropy (v_n)

Collective expansion originated from fluctuating initial density distribution

Mass dependence and meson/baryon separation

3rd order (triangular) event anisotropy (v₃)

Anisotropic shape after expansion

Elliptic and Triangular shape at freeze-out remained (2nd) and/or reversed (3rd)

Phys. Rev. Lett. 112 (2014) 222301

Shape and flow relation to the jet modification

Jet quenching (high p_T suppression)

--- partonic energy-loss : $R_{AA}(\pi^0) < 1$ ---

--- penetration of direct photon : $R_{AA}(\gamma^{dir.})=1$ ---

Au

QGP at RHIC, INPC2016, 11-16/Sep, Adelaide, Australia

p

Aυ

Thermal photon yield and flow at Low \mathbf{p}_{T}

- $R_{AA}{\sim}1$ and $v_{2}{\sim}0$ at high $p_{T}\,prompt\,photon$
- Large photon yield from early stage
- Large photon flow from later stage
- Bremsstrahlung with early B-field...
- New data from STAR arXiv:1607.01447 with somewhat smaller yield...

Net-proton distribution

QGP at RHIC, INPC2016, 11-16/Sep, Adelaide, Australia

fluctuation of conserved quantity

Possible critical signature

large errors : comparable to the critical signal need for Beam Energy Scan Phase 2 (2019-)

Beam Energy Scan 2 @ STAR

Jet @ sPHENIX

Baryon Chemical Potential µ_B (MeV)

Summary

- Collective flow
- Jet quenching
- Correlation & fluctuation
- Beam energy dependence (Critical point : 10~40GeV?)

