

Systematic studies of *E*0 transitions in 54,56,58_{Fe}

Tomas Eriksen PhD student The Australian National University INPC 2016 Adelaide

Motivation – Shape coexistence

Aim:

identify and characterize 0^+ states and E0 transitions close to Z=N=28

^{54,56,58}Fe experiments

- 14UD Tandem accelerator at ANU
- 6.7 7.0 MeV proton beams
- CAESAR: γ and γγ coincidences
- Super-e: conversion e⁻, e⁻e⁺ pairs, γ
- Lifetime information: University of Kentucky

 $a_2 = -3$, $a_4 = 4$

3.8(9)

-2.8(8)

⁵⁸Fe

Super-e: conversion e⁻ and e⁻e⁺ pairs

⁵⁴Fe

⁵⁴Fe

⁵⁶Fe

⁵⁶Fe

⁵⁶Fe – second excited 0⁺ state

⁵⁸Fe

Results

Results

Results

Collaborators:

Australian National University

Tibor Kibédi, Mattew W. Reed, Mitchell de Vries, Andrew E. Stuchbery, Aqeel Akber, Jackson Dowie, Matthew Gerathy, Gregory J. Lane, Alan J. Mitchell, Thomas Palazzo, Tamás G. Tornyi.

<u>Georgia Institute of Technology</u> John Wood

<u>University of Kentucky</u> Sharmistha Mukhopadhyay, Erin E. Peters, Anthony Paul D. Ramirez, Steven W. Yates

TRIUMF

Lee Evitts, Adam B. Garnsworthy, James Smallcombe

Super-e efficiency

Super-e efficiency

 Have to consider angular correlations between the e⁻e⁺

 MC simulation of the pair emission in 4π

Results ⁵⁴Fe

Interpretation *E*0 strengths

 ${}^{54}_{26}$ Fe

Interpretation *E*0 strengths

Motivation – Shape coexistence

E0 transitions: sensitive probes of the mean charge radius

$$\rho_{f_i}^2 = \left| \sum_{l} a_l^i a_l^{f*} \sum_{k=1}^n e_k \langle \psi_l | r_k^2 | \psi_l \rangle \right|^2 \frac{1}{e^2 R^4}$$

0⁺ states difficult to describe theoretically $\rho^2(E0)$ only known for ⁵⁴Fe and ^{58,60,62}Ni

Aim: identify and characterize 0⁺ states and E0 transitions close to Z=N=28

Additional lifetime info, thanks to

- Departments of Chemistry, and Physics & Astronomy, University of Kentucky
- Doppler shift attenuation following inelastic neutron scattering

Background

 N-rich Ni-isotopes (Z=28) and isotones (N=28) exhibit spherical shape coexistence

 The stable even-even iron isotopes suitable for investigating behavior close to Z=N=28 shell gaps

0⁺ states and *E*0 transitions

0⁺ states and *E*0 transitions

⁵⁴Fe

⁵⁶Fe

⁵⁸Fe

⁵⁸Fe

⁵⁶Fe

Angular correlations CAESAR

Angular correlations CAESAR

⁵⁴Fe

⁵⁶Fe

⁵⁸Fe

⁵⁴Fe – second excited 0⁺ state

43

⁵⁴Fe – first excited 0⁺ state

Transition [keV]	Peak area	Relative efficiency	Relative intensity
1153.1	20724(506)	41.5(8)	499(16)
2561.3	21882(260)	79.6(15)	275(6)

⁵⁴Fe – second excited 0⁺ state

Transition [keV]	Peak area	Efficiency (rel.)	Intensity (rel.)
2881.9	278(39)	9.1	30.6(43)
4290.8	122(18)	5.8	21.0(31)

⁵⁴Fe summary

 $\rho(E0) = \frac{|\mathsf{M}(E0)|}{eR^2}$

	Kentucky		ENSDF	
	τ(Ε2)	$10^3 imes ho^2(E0)$	τ(E2)	$10^3 imes ho^2(E0)$
0 ⁺ ₁	> 3706.2 fs	< 80.3	≥ 2020 fs	≤ 147.4
0 ⁺ ₂	69 ⁺¹⁰ ₋₉ fs	92^{+23}_{-22}	79^{+25}_{-20} fs	80 ⁺³² ₋₂₅

⁵⁶Fe – first excited 0⁺ state

Ratio of the 1408 and 2561 keV transitions:

 54 Fe dataset: R = 199524/22600 ≈ 9

⁵⁶Fe dataset: R = $8671/977 \approx 9$

⁵⁶Fe – first excited 0⁺ state

⁵⁸Fe

⁵⁸Fe – first excited 0⁺ state

Results ⁵⁴Fe

⁵⁸Fe

⁵⁸Fe

