Measurement of Total Decay Energies of T=1 and T=1/2 Nuclei at LEBIT for the Search of Physics beyond the Standard Model

Martin Eibach

Facility for Rare Isotope Beams National Superconducting Cyclotron Laboratory

The CVC hypothesis

corrected \mathcal{Ft} -value should be equal for all β -decays in the same subset

- Two subsets of nuclear β -decays investigated: superallowed $0^+ \rightarrow 0^+(J^{\pi}=0^+, T=1)$ and T=1/2 mirror nuclei
- important for tests of the Standard Model by setting tight limits on the existence of scalar currents
- provides the most precise value for V_{ud} to test **the unitary of CKM matrix**.

The CVC hypothesis

Low-Z isotopes: most sensitive to scalar interaction due to low Q

Three (four) experimental quantities contribute to the determination of *F t*:

Q, half-life $t_{1/2}$, branching ratio **BR**, Fermi/GT mixing ratio ho

- If there is a scalar interaction an additional term approximately inversely proportional to Q would be present in $\mathcal{F} t$.
- Only the Q-value of ¹⁴O was not measured with a Penning trap.
- Lower dominance of experimental uncertainties in mirror nuclei.
- Important: ρ is only determined for five nuclei (¹⁹Ne, ²¹Na, ²⁹P, ³⁵Ar, ³⁷K)

National Science Foundation Michigan State University

LEBIT (Low Energy Beam Ion TRAP) The only Penning trap mass spectrometry at a fragment separator

100 MeV/u

- Projectile Fragmentation and In-Flight Separation
 ✓ Fast
 - ✓ Universal
 - ✓ Chemistry independent

 Penning Trap Mass Spectrometry

 High-precision
 High Sensitivity

eV

More about NSCL/FRIB: tomorrow, 15:50, L3

Time-of-Flight Ion Cyclotron Resonance (TOF-ICR)

From time-of-flight to Q value

²¹Na⁺ - 500ms Ramsey excitation

- measure cyclotron frequency
- known charge state
- track B-field with calibrant of wellknown mass

determine mass(difference)

Q=[m(mother) - m(daughter)] c²

Ideal: Calibrant nuclide is part of the decay

Measurements at LEBIT and their impact

Uncertainty of the *Q* value was pushed to insignificant levels

- ¹⁴O and ²¹Na: measured directly
- ¹¹C and ²⁹P: determined via mass measurement

	ΔQ_{old} (kev)	ΔQ_{LEBIT} (kev)
¹¹ C	1982.4(9)	1981.690(61)
¹⁴ O	5144.32(28)	5144.364(25)
²¹ Na	3547.14(28)	3547.11(9)
²⁹ P	4942.45(60)	4942.18(37)

¹⁴O decays to exited state: **Q_{EC}(sa) = 2831.566(28) keV**

K. Gulyuz, et al., Phys. Rev. Lett. 116, 012501 (2016)
M. Eibach, et al., Phys. Rev. C 92, 045502 (2015)
A. A. Valverde, et al., Phys. Rev. Lett. 114, 232502 (2015)
P. A. Voytas and E. A. George, Phys. Rev. C 92, 065502 (2015)

Measurements at LEBIT and their impact

Independent unitarity test for CKM matrix

$$\mathcal{F} t = ft (1 + \delta'_{R}) (1 + \delta_{NS} - \delta_{C}) = 3073.8(2.8) s$$

Uncertainty reduced to 1.9s with new branching ratio.

T=1/2 mirror nuclei provide a complementary, independent approach to determine V_{ud} element of the CKM matrix.

With Ft from superallowed $0^+ \rightarrow 0^+$ decays and from T=1/2 mirror decays: Prediction of ρ for ¹¹C : $\rho = 0.7493(5)$

Parametrization of f: I. S. Towner and J. C. Hardy, Phys. Rev. C **91**, 015501 (2015).

Summary and Outlook

- > Penning trap mass spectrometer LEBIT is an excellent tool for mass measurements
- > Q_{EC} values of ²¹Na, ²⁹P, and ¹¹C to study T=1/2 mirror nuclei
- Q_{EC} value of ¹⁴O to study superallowed beta emitters
- Active community
 - → Recent half-life measurements
- Q_{EC} value measurements of Tz=-1 nuclei

Grinyer et al., Phys. Rev. C **92**, 045503 (2015) P. A. Voytas and E. A. George, Phys. Rev. C **92**, 065502 (2015) M. R. Dunlop, et al., Phys. Rev. Lett **116**, 172501 (2016)

The Single Ion Penning Trap (SIPT) project Advancing sensitivity of LEBIT

TOF-ICR and FT-ICR at SIPT for comparison

TOF-ICR measurement at SIPT

available with backwards extraction

