First Results from GRIFFIN Half-lives of Neutron Rich ¹²⁸⁻¹³⁰Cd and ¹³¹In

Ryan Dunlop Physics Dept. University of Guelph, Canada INPC 2016

r-process

High n density fast capturing

Produces many of the naturally occurring, heavy, neutron-rich nuclei

Site of r-process

- Neutron star mergers
- Core-collapse Supernovae?

r-process

Waiting-point approximation assumes:

- (n,γ) (γ,n) equilibrium
 within isotopic chain
- β-flow equilibrium

• Flow rate (and equilibrium population) is characteristic of waiting-point half-lives

Q(γ,n) small at closed n-shells, these nuclei are waiting points and r-process moves along them towards stability.

r-process

Freeze-out

r-process peaks: 1st peak: A≈80 → N=50 2nd peak: A≈130 → N=82 3rd peak: A≈195 → N=126 rare earth peak A≈165 → ?

Sensitivity of r-process rate to ¹³⁰Cd decay rate

 ^{130}Cd is responsible for the maximum of second r-abundance peak at N=82

Shell-model calculations for the half-lives of N=82 waiting point nuclei use a quenched GT operator that reproduces the 130 Cd half-life.

Recent measurement at RIKEN by Lorusso et al. shortens half life by > 5σ .

New: 127(2) ms

Old: 162(7) ms Half Lives (ms) N=82

	Exp	Shell Model	Exp/Shell	
¹³¹ In	261(3)	247.53	1.06(1)	
¹³⁰ Cd	162(7)	164.29	0.99(4)	
¹²⁹ Ag	52(4)	69.81	0.74(6)	
¹²⁸ Pd	35(3)	47.25	0.74(6)	
¹²⁷ Rh	20± 7 0	27.98	0.74±28	
G. Lorusso <i>et al.</i> PRL 114 192501 (2015)				

Complicated Decay Chains

- Short-lived ground states
- isomers with comparable half-lives
- beta-n branches

- Fitting Charged particles is challenging
- Fit time distribution of characteristic gamma rays
- Need high-efficiency gammaray spectrometer

GRIFFIN

- 16 large volume HPGe Clovers
- Used for studying beta decay at TRIUMF-ISAC
- Custom Digital electronics (50 kHz/crystal)

¹²⁹Cd Beta coinc. Gamma Energy Spectrum

Back Chop-Plot

Time (ms)

- Changed binning
- Fixed constant background parameter

RD et al., Phys Rev. C. 93, 062801(R) (2016).

¹³⁰Cd Half-Life

RD et al., Phys Rev. C. 93, 062801(R) (2016).

Comparison to Theory

Theory is over-predicting ¹³⁰Cd

Rescaling GT-quenching to new ¹³⁰Cd half-life resolves this

Comparison to Theory

Half Lives (ms) of N = 82 waiting points

	Ехр	Scaled SM	Exp/ Scaled
¹³¹ In	261(3)	191.68	1.36(2)
¹³⁰ Cd	127(2)	127	1.00
¹²⁹ Ag	52(4)	54.06	0.96(7)
¹²⁸ Pd	35(3)	36.59	0.96(6)
¹²⁷ Rh	20±70	21.66	0.92+32

Shorter half-life resolves problem with GT quenched calculations

What about ¹³¹In...?

¹³¹Sn γ -rays following ¹³¹In Decay

Many gamma rays observed

- Goal: Expand and confirm current level scheme
 - Large coincidence efficiency
 - Possibility to do angular correlations
- Goal: Solve the ¹³¹In half-life discrepancy

1/2-

9/2+)

4273+x**-**

331

(17/2+)

(7/2+)

(1/2+)

302

¹³¹In

Summary

- The GRIFFIN spectrometer is on-line at TRIUMF-ISAC allowing for the study of rare isotopes beams with low production yields
- The recent discrepant half-life measurements of ¹²⁹Cd and ¹³⁰Cd have been confirmed.
- The new half-life of ¹³⁰Cd resolves the problem of systematically short theoretical calculations of the half-life by providing a new Gamow-Teller quenching factor.
- A new theoretical outlier, ¹³¹In, exists with a half-life that is 40% too large. An analysis of the decay of ¹³¹In is underway in conjunction with an analysis of the decay of ¹³¹Cd in order to understand this discrepancy.

Collaborators

University of Guelph (Canada)

V. Bildstein, C. E. Svensson, H. Bidaman, P. Boubel, C. Burbadge, M. R. Dunlop, P. E. Garrett, D. Kisliuk, A. D. MacLean, E. McGee, B. Olaizola, A. J. Radich, J. Turko, T. Zidar

<u> TRIUMF (Canada)</u>

I. Dillmann, G. C. Ball, N. Bernier, R. Caballero-Folch, L. J. Evitts, A. B. Garnsworthy, G. Hackman, S. Hallam, J. Henderson, R. Krucken, J. Lassen, R. Li, E. MacConnachie, M. Moukaddam, J. Park, O. Paetkau, P. Ruotsalainen, J. Smallcombe, J. K. Smith, A. Teigelhofer

I hank you

Instituto de Estructura de la Materia - CSIC (Spain)

A. Jungclaus

Simon Fraser University (Canada)

C. Andreoiu, F. Garcia, J. L. Pore

<u>Universidad Nacional Autonoma de Mexico (Mexico)</u>

E. Padilla-Rodal

Colorado School of Mines (USA)

S. Ilyushkin

CNRS (France)

C. M. Petrache

Florida State University (USA)

S. L. Tabor