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Lattice QCD Motivation

Calculation of gA, gS and 〈x〉 have been difficult.

Figure: Constantinou 2015 Figure: Syritsyn 2014
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Aim

Some problems associated with calculating these include:
I Finite size effects
I Renormalisation
I Continuum extrapolation
I Excited-state contamination

This talk:
I gA, gS , 〈x〉
I form factors, GE , GM , GA, GP

Emphasis on excited-state contamination effects

Some proposed methods to improve this include:
I Summation method
I Two-state fit method
I Variational method

The aim of this work is to systematically compare 3 three methods for all quantities
extracted.
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Calculation Parameters

QCDSF/UKQCD/CSSM gauge fields.

SU(3)-symmetric point

mπ ≈ 470 MeV.

Lattice Spacing of 0.074 fm

323 × 64 volume.

Gauge-invariant Gaussian smearing.
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Calculation Parameters

Summation / two-state fit methods:
I tsink − tsource = 10, 13, 16, 19, 22 (0.74 fm ≤ t ≤ 1.63 fm)
I Smearing = 32 sweeps (rms radius = 0.248 fm)

Variational method:
I tsink − tsource = 13, 16 (0.96 fm , 1.184 fm)
I Smearings = 32, 64, 128 sweeps (rms radius = 0.248 fm, 0.351 fm, 0.496 fm)

t 10 13 16 19 22
Nsmear

32 ? ? ? ? ?
64 ?

128 ?
variational ? ?
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Two-Point Correlators

Defined as:

G2(Γ; ~p, t) =∑
~x

e−i~p·~xTr
{

Γ 〈Ω|χ(~x, t)χ (0) |Ω〉
}

Which reduces to:

G2(Γ4; ~p, t) =
∑
α

e−E
α
~p tZ α

~pZ
α
~p

Can find the mass m, via:

log

(
G2(Γ4;~0, t)

G2(Γ4;~0, t+ ∆t)

)
t�0−−→ m∆t
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Variational Method

Create a linear combination that strongly couples to state α

φα(x, ~p) ≡
∑
i

vαi (~p)χi(x),

φ α(0, ~p) ≡
∑
i

uαi (~p)χi(0)

u and v obtained by solutions to a
Generalised Eigenvalue Problem.

Optimal 2 point correlator is
produced by projecting with u and v:

Gα2 (~p, t; Γ) = vαi (~p) (G2)ij (Γ; ~p, t)uαj (~p),
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Three-point correlators

Three-point correlator defined as:

G3(Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
~x,~y

e−i~p
′·~xei~q·~yTr

{
Γ 〈Ω|χ(~x, t)O(q)(~y, τ)χ(~0, 0) |Ω〉

}

For zero momentum, a simple ratio gives us an
extracted value

R(Γ; t; τ ;O(q)) ≡ G3(Γ; t; τ ;O(q))

G2(Γ4; t)

t�τ�0−−−−−→ FF

Selecting appropriate O(q) and Γ gives access
to FF = gA, gS etc..
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Variational Method for Three-Point Correlators

Extending the variational method to three-point correlators, we have:

Gα3 (Γ; ~p ′, t; ~q, τ ;O(q)) =
∑
~x,~y

e−i~p
′·~xei~q·~yTr

{
Γ 〈Ω|φα(x, ~p)O(q)(y)φ α(0, ~p) |Ω〉

}

So in terms of calculation, we can use the same u and v vectors in the three-point correlator
construction via the projection:

Gα3 (Γ; ~p ′, t; ~q, τ ;O(q)) = vαi (~p ′) (G3)ij (Γ; ~p ′, t; ~q, τ ;O(q))uαj (~p)
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S (t) =

t−δt∑
τ=δt

R(t, τ)→

c+ t

{
FF +O

(
e−∆mt

)}

Where
∆m = m1 −m0.

Free to choose δt
(or cut value).
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Two-Exponential Fit

Fitting an expected function for the two states produces mass and coefficient parameters

G2(~0, t) = Ame
−mt +A′me

−(m+∆m)t

Then use the fit parameters above to fit another expected function for the three-point case

G3(Γ;~0, t;~0, τ ;O(q)) = Ame
−mt

{
B0 +B1

(
e−∆mτ + e−∆m(t−τ)

)
+B2e

−∆mt

}
.

Where B0 is proportional to the matrix element in question,

B2 can only be calculated if fitting over multiple sink times.
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Form Factors

No disconnected quark loop contributions for proton and neutron combinations.

Solve system of equations for γµ / γ5γµ, Γ and ~q in q2

AEGE(q2) +AMGM (q2) = R(Γ;~0, t; ~q, τ ;uγµu),

AAGA(q2) +APGP (q2) = R(Γ;~0, t; ~q, τ ;uγ5γµu),

Comparing the excited-state contamination effects by comparing:
I 32, 64, 128 sweeps of smearing at t = 13
I Variational method at t = 13
I Two-exponential fit method over 32 sweeps of smearing using t = 10, 13, 16, 19, 22
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Summary

We have systematically undertaken all 3 methods in this analysis.

Variational method can reach the ground state solution by optimising our interpolating
fields.

The two-state fit and summation methods are sufficient for removing “minimal”
excited-state contamination.

Careful consideration is needed when analysing correlators with insufficient source-sink
separations.

Excited-state systematics is crucial if we hope to undertake precise calculations of:
I Form factors at larger Q2

I Complicated operators O(q) = qγµ1Dµ2 . . . Dµnq
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Cost/Benefit Discussion

The biggest contributor to calculation time is associated with matrix inversions.

Assume we use the same number of gauge fields per calculation.

Creating a G2 requires 1 set of inversion for a point to all propagator.

Creating a G3 requires 4~p ′ sets of inversions to account for up/down quark contributions
and spin projections.

Create Standard 2exp & SM (over nt) CM (over nbasis)

C2 1 1 nbasis
C3 4 4nt 4nbasis
Total 5 1 + 4nt 5nbasis
This Work 5 21 15
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Pencil of Function

A Pencil of Function can be utilised as shown in Phys. Rev. D 90, 074507 (2014) J. R.
Green et al.

As done in the variational method, we create a matrix of 2 point correlators of the form:

G2(~p, t) =

[
(G2)ij (~p, t) (G2)ij (~p, t+ δ)

(G2)ij (~p, t+ δ) (G2)ij (~p, t+ 2δ)

]
kl

.

We can visualise the above equation as a block matrix equation, with indices running over
both the sink shifts kl and the smearings ij.
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