

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

P. Doornenbal, for the SUNFLOWER Collaboration ピーター ドルネンバル

Outline

Physics Case

Experimental Setup

"Island of Inversion"

SEASTAR

Summary and Outlook

Physics case

Setup

Selected results

The "Island of Inversion"

SEASTAR

- Neutron-rich Cr, Fe isotopes
- Kr isotopes beyond N = 60
- N = 70 isotones

Conclusions and perspectives

Physics Case

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

Regions of Interest

Regions of Interest

■ stable isotopes (300) known isotopes (3200) isotopes estimated to exist (7000) 184 number of protons Other in-beam gamma talks during INPC 2016: Mo: K. Wimmer, Shape Coexistence at N = Z: Spectroscopy of the $T_z = -1$ nucleus ⁷⁰Kr Mo: S. Chen In-beam γ -ray spectroscopy of ^{88,90,92,94}Se Tu: R. Taniuchi, First Spectroscopy of the doubly-magic ⁷⁸Ni knockout reaction Tu: V. Werner Gamma-ray spectroscopy into the neutron-rich $A \approx 90$ region Tu: M.L. Cortes Inelastic scattering of Ni and Zn isotopes off a proton target Th: D. Steppenbeck Low-lying structures of exotic Sc isotopes an the evolution of the N = 34 subshell closure number of neutrons 2 8

Experimental Setup

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

RIBF Overview

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

Superconducting Ring Cyclotron (SRC)

Intensities	of 345 N	leV/u beams from	m the SRC	R	-	
Nuclous	Beam Intensity / pnA				1 -	
INUCIEUS	Goal	Achieved Max	Average			K = 2500 MeV
⁴⁸ Ca	1000	689	500	A THREADY AND		8300 tons
⁷⁰ Zn	1000	123	100	STELL-		5.36 m extraction radius
⁷⁸ Kr	1000	486	250			6 sector magnets
¹²⁴ Xe	100	>100	70–80			four main RF cavities
²³⁸ U	100	49	40			

Superconducting Ring Cyclotron (SRC)

ZeroDegree Spectrometer

DALI2 (2010-to Present)

Physics Case

- Experimental Setup
- RIBF Overview
- ZeroDegree

DALI2 Configuration

- "Island of Inversion"
- SEASTAR
- Summary and Outlook

- Forward-wall configuration
- 186 Nal(TI) detectors
- ϑ coverage 11° to 165°
- 7 % intrinsic resolution at 1 MeV
- $\Delta E/E \approx$ 10(11) % at 100(250) MeV/u
- 20% efficiency @ 1 MeV w/o add-back
- Simplified target holder and beam pipe
- **3 PPAC for beam tracking,** σ_{ϑ} = 5 mrad
- 1mm Pb (+1mm Sn) shielding

S. Takeuchi et al., NIMA 763, 596 (2014).

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

Results on "Island of Inversion"

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

Overview of Deformed Nuclei Around "Island of Inversion"

Original boundaries: E. K. Warburton *et al.*, Phys. Rev. C **41**, 1147 (1990).

N = 20,28 shell erosions merge to "Big Island of Deformation"

E. Caurier et al., PRC 90, 014302 (2014).

Overview of Deformed Nuclei Around "Island of Inversion"

- Original boundaries: E. K. Warburton *et al.*, Phys. Rev. C **41**, 1147 (1990).
- N = 20,28 shell erosions merge to "Big Island of Deformation"
 - E. Caurier *et al.*, PRC **90**, 014302 (2014).
- Quantify deformation of ³⁰Ne and ³⁶Mg $\rightarrow B(E2)\uparrow$ measurements

Overview of Deformed Nuclei Around "Island of Inversion"

- Original boundaries: E. K. Warburton *et al.*, Phys. Rev. C **41**, 1147 (1990).
- N = 20,28 shell erosions merge to "Big Island of Deformation"
 - E. Caurier et al., PRC 90, 014302 (2014).
- Quantify deformation of ³⁰Ne and ³⁶Mg $\rightarrow B(E2)\uparrow$ measurements
- Investigation of intruder components in g.s. of ³⁰Ne

Scattering of ³⁰Ne and ³⁶Mg

Tar.	$E(2_{1}^{+})$	$\sigma(2^+_1)$ /mb	δ /fm	eta
C	799(5)	14(1)	1.98(7)	0.53(2)
Pb	801(6)	56(5)	1.86(19)	0.50(5)
C	666(5)	15(1)	1.94(7) [´]	0.49(2)
Pb	665(5)	72(7)	2.02(16)	0.51(4)
H	800(7)	37(4)	1.59(8)	0.45(2)
H	656(13)	47(8)	1.90(16)	0.50(5)
	Tar. C Pb C Pb H H	Tar. $E(2^+_1)$ C799(5)Pb801(6)C666(5)Pb665(5)H800(7)H656(13)	Tar. $E(2^+_1)$ $\sigma(2^+_1)/\text{mb}$ C799(5)14(1)Pb801(6)56(5)C666(5)15(1)Pb665(5)72(7)H800(7)37(4)H656(13)47(8)	Tar. $E(2_1^+)$ $\sigma(2_1^+)/\text{mb}$ δ/fm C799(5)14(1)1.98(7)Pb801(6)56(5)1.86(19)C666(5)15(1)1.94(7)Pb665(5)72(7)2.02(16)H800(7)37(4)1.59(8)H656(13)47(8)1.90(16)

¹PD, HS *et al.*, PRC 93, 044306 (2016). ²S. Michimasa *et al.*, PRC 89, 054307 (2014).

Scattering of ³⁰Ne and ³⁶Mg

B.V. Pritychenko *et al.*, PLB 461, 322 (1999).
J. Gibelin *et al.*, PRC 75, 057306 (2007).
H. Iwasaki *et al.*, PLB 620, 118 (2005).

SDPF-P: Y. Utsuno *et al.*, PRC 60, 054315 (1999). SDPF-U-MIX: E. Caurier *et al.*, PRC 90, 014302 (2014). USDA: B.A. Brown and W.A. Richter, Phys. Rev. C 74, 433 (2006). AMPGCM: B. Bodriguez-Guzman *et al.* Phys. Lett. B 474, 15 (2000).

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

Partial Cross-Sections and Momentum Distributions in ${}^{12}C({}^{30}Ne, {}^{29}Ne+\gamma)X$

Calculations by Y. Utsuno and J. Tostevin

SEASTAR

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

Shell Evolution And Search for Two-plus energies At the RIBF (SEASTAR)

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

70

 110 Zr

Shell Evolution And Search for Two-plus energies At the RIBF (SEASTAR)

 110 Zr Observed Stable New 2_1^+ , (4_1^+) New 4_1^+ Ar Evon Odd Neutron sub-shell at N = 34 below ⁵⁴Ca (⁵²Ar) Correlations in Ca isotopes beyond ⁵⁴Ca (⁵⁶Ca) Low-Z shore of the N = 40 "Island of Inversion" (^{60,62}Ti) Collectivity evolution beyond N = 40 (⁶⁶Cr, ⁷²Fe) Anticipated new doubly-magic nucleus ⁷⁸Ni Orbital migration beyond N = 50 (⁸²⁻⁸⁴Zn, ^{86,88}Ge, ^{90,92}Se) Rise in collectivity at $N \ge 60$ (⁹⁴Se, ^{98,100}Kr) Evidence for a N = 70 sub-shell effect (¹¹⁰Zr) 6

MINOS: Coupling of a Liquid Hydrogen Target with a TPC

Maglc Numbers Off Stability

http://minos.cea.fr

- Up to 1 g/cm² liquid hydrogen target
 Position sensitive TPC
 - Driftime \rightarrow Z-beam axis
 - Vertex position reconstruction
 - Achieved \approx 5 mm (FWHM)
- A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).

Nuclei of Interest for First SEASTAR Campaign, May 2014

Maximum of Collectivity Beyond N = 40

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

INPC, Adelaide Sep. 11-16, 2016 - 19

46

Fe isotopes

Nuclei of Interest for Second SEASTAR Campaign, May 2015

Neutron-rich Kr Isotopes

Analysis by F. Flavigny, IPN Orsay

Neutron-rich Kr Isotopes

SCCM: T.R. Rodriguez PRC 90, 034306 (2014). 5DCH: J.-P. Delaroch *et al.*, PRC 81, 014303 (2010).

Analysis by F. Flavigny, IPN Orsay

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

First Spectroscopy of ¹¹⁰Zr

- DALI2 thresholds < 100 keV</p>
- Subtraction of Bremsstrahlung components from elastic events (with absolute normalisation)
- Benchmark on ¹⁰⁸Zr and in agreement with ¹¹²Mo β -decay from EURICA
- Lifetime effects taken into account
- Analysis by N. Paul, CEA Saclay

Extreme Deformation at N = 70in ¹¹²Mo and ¹¹⁰Zr

Data show increase of deformation along N = 70
Comparison to beyond mean field approaches:

Gogny D1S, Bohr Hamiltonian (5DCH)
Gogny D1S, full GCM
SlyMR0, full GCM

Good agreement for ¹¹⁰Zr with MCSM
No stabilizing N = 70 subshell

Summary and Outlook

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

Physics Case of 3rd SEASTAR Campaign

Summary

Physics Case

Experimental Setup

"Island of Inversion"

SEASTAR

Summary

In-beam spectroscopy at RIBF efficient to study evolution at maximum isospin

- Basic nuclear properties 2_1^+ , 4_1^+ , $B(E2)\uparrow$
- Spin-assignments from momentum distribution
- Can measure absolute $B(E2)\uparrow$ with 15–20 % accuracy at 200 MeV/u
- Large deformation of $\beta \approx 0.5$ in all n-rich Ne and Mg isotopes
- SEASTAR Project at the RIBF
 - Combination of LH₂ target up to 15 cm with DALI2
 - First spectroscopy of:
 - May 2014: ⁶⁶Cr, ^{70,72}Fe, ⁷⁸Ni
 - May 2015: ⁸⁴Zn, ⁸⁸Ge, ^{88,90,92,94}Se, ^{98,100}Kr, ¹¹⁰Zr, ¹¹²Mo
 - Spring 2017: ⁵²Ar, ⁵⁶Ca, ⁶²Ti

RIBF32 Collaboration (Dec. 2010 Campaign)

- **Physics Case**
- **Experimental Setup**
- "Island of Inversion"
- SEASTAR

Summary

N. Aoi¹, H. Baba¹, H. Crawford², P. Doornenbal¹, C.R. Hoffman³, R. Hughes⁴, E. Ideguchi⁵, N. Kobayashi⁶, Y. Kondo⁶, J. Lee¹, K. Li^{1,7}, M. Matsushita^{1,8}, S. Michimasa⁵, T. Motobayashi¹, H. Sakurai¹, **H. Scheit^{1,7}**, D. Steppenbeck¹, M. Takechi¹, **S. Takeuchi¹**, Y. Togano¹, H. Wang^{1,7}, R. Winkler⁹, and K. Yoneda¹

¹RIKEN, ²LBNL, ³ANL, ⁴Univ. Richmond, ⁵CNS, ⁶TITEC, ⁷Univ. Peking, ⁸Rikkyo Univ., ⁹NSCL

SEASTAR Collaboration

SEASTAR:

N. Alamanos, G. de Angelis, N. Aoi, H. Baba, C. Barbieri, C. Bertulani, C. Bernards, A. Blazhev, S. Boissinot, F. Browne, A. Bruce, B. Cakirli, B. Cederwall, N. Cooper, A. Corsi, M. L. Cortés, F. Delaunay, B. Ding, Z. Dombradi, P. Doornenbal, T. Duguet, S. Franchoo, J. Gibelin, A. Gillibert, S. Go, M. Gorska, A. Gottardo, S. Grevy, J.D. Holt, E. Ideguchi, T. Isobe, A. Jungclaus, N. Kobayashi, T. Kobayashi, Y. Kondo, W. Korten, T. Kroell, Y. Kubota, I. Kuti, V. Lapoux, S. LeBlond, J. Lee, S. Lenzi, H. Liu, Z. Liu, G. Lorusso, C. Louchart, R. Lozeva, F.M. Marques, I. Matea, K. Matsui, Y. Matsuda, M. Matsushita, J. Menendez, D. Mengoni, S. Michimasa, T. Miyazaki, S. Momiyama, P. Morfouace, T. Motobayashi, T. Nakamura, D. Napoli, F. Naqvi, M. Niikura, M. Nishimura, S. Nishimura, A. Obertelli, L. Olivier, N. Orr, S. Ota, H. Otsu, T. Otsuka, N. Pietralla, Zs. Podolyak, E.C. Pollacco, G. Potel, G. Randisi, F. Recchia, E. Sahin, H. Sakurai, C. Santamaria, M. Sasano, H. Sato, A. Schwenk, C. Shand, Y. Shiga, Y. Shimizu, S. Shimoura, J. Simonis, P.A. Soederstroem, D. Sohler, V. Soma, I. Stefan, D. Steppenbeck, T. Sumikama, D. Suzuki, H. Suzuki, M. Tanaka, R. Taniuchi, K.N. Tuan, T. Uesaka, Y. Utsuno, J. Valiente Dobon, Zs. Vajta, D. Verney, H. Wang, V. Werner, K. Wimmer, Zh. Xu, R. Yokoyama, and K. Yoneda

Thank You!

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF

Backup Slides

Recent Results of In-Beam Gamma-Ray Spectroscopy at the RIBF