Measurement Of The Heaviest Beta-Delayed Neutron-Emitters With BELEN

Iris Dillmann
Associate Scientist (TRIUMF)
Adjunct Professor (University of Victoria)

September 12, 2016
1. The r-process and β-delayed neutron emitters
2. BELEN-30@ GSI Darmstadt
3. BELEN-48@ IGISOL Jyväskylä
4. Outlook: BRIKEN project @ RIKEN
- \(S_n < Q_\beta \)
- "Delayed": emission with \(\beta \)-decay half-life of the precursor \(^AZ \) (\(t_{1/2} = \text{ms...90 s} \))
- \(n \) branching ratio (\(P_{1n} \)-value)
\(S_{2n} < Q_\beta \)
β-delayed neutron emitters (Z=0-30)

https://github.com/ciccons/TRIUMF-BDNE-Chart
β-delayed neutron emitters (Z=31-60)

Experimentally Known Beta-Delayed Neutron Emitters

https://github.com/ciccons/TRIUMF-BDNE-Chart
β-delayed neutron emitters (Z=61-92)

Experimentally Known Beta-Delayed Neutron Emitters

P_{1n}: 210Tl

https://github.com/ciccons/TRIUMF-BDNE-Chart
Canadian Evaluation efforts

<table>
<thead>
<tr>
<th></th>
<th>Energetically possible</th>
<th>Measured</th>
<th>Fraction measured (%)</th>
<th>Mass region</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1n</td>
<td>606</td>
<td>227</td>
<td>37.5%</td>
<td>$^8\text{He-}^{150}\text{La (}^{210}\text{Tl)}$</td>
</tr>
<tr>
<td>β_2n</td>
<td>295</td>
<td>24</td>
<td>8.1%</td>
<td>$^{11}\text{Li-}^{100}\text{Rb}$</td>
</tr>
<tr>
<td>β_3n</td>
<td>104</td>
<td>6</td>
<td>5.8%</td>
<td>$^{11}\text{Li, }^{14}\text{Be, }^{17,19}\text{B, }^{23}\text{Na, }^{31}\text{Na}$</td>
</tr>
<tr>
<td>β_4n</td>
<td>60</td>
<td>1</td>
<td>1.7%</td>
<td>^{17}B</td>
</tr>
</tbody>
</table>

Table 1: Number of energetically possible vs. measured βn-emitters. (“Energetically possible” means every case where $Q_{\beta n} > 0$ keV (using masses from the AME2012).)

Coordinated Research Project (2013-2017)

- Evaluation of $Z=29-84$ underway (publication in 2017)
r-process path:
depends on astrophysical site

Motivation: explore the
Terra Incognita
Why are half-lives and βn so important?

- **Masses**: define reaction path
- **Half-lives**: define shape
- **Shell structure far off stability**: defines position of abundance peaks
- **Neutrons from β-delayed neutron emission or (γ,n)**: smoothing of abundance curve

需实验信息，需了解Terra Incognita中的同位素的信息！

- **TERRA INCOGNITA**
- *Identified*
- *Known half-life*
- *r-process waiting point*
High-pressure 3He long counters in polyethylene moderator:

3He + n → 3H + p + 765 keV
BELEN-30 at
GSI Darmstadt/ Germany

R. Caballero-Folch1,2, C. Domingo-Pardo3,*, J. Agramunt3, A. Algora3,4, F. Ameil5, A. Arcones5, Y. Ayyad6, J. Benlliure6, I.N. Borzov7,8, M. Bowry9, F. Calviño1, D. Cano-Ott10, G. Cortés1, T. Davinson11, I. Dillmann2,5,12, A. Estrade5,13, A. Evdokimov5,12, T. Faestermann14, F. Farinon5, D. Galaviz15, A.R. García10, H. Geissel5,12, W. Gelletly9, R. Gernhäuser14, M.B. Gómez-Hornillos1, C. Guerrero16,17, M. Heil5, C. Hinke14, R. Knöbel5, I. Kojouharov5, J. Kurcewicz5, N. Kurz5, Yu. A. Litvinov5, L. Maier14, J. Marganiec18, T. Marketin19, M. Marta5,12, T. Martínez10, G. Martínez-Pinedo5, F. Montes20,21, I. Mukha5, D.R. Napoli22, C. Nociforo5, C. Paradela6, S. Pietri5, Zs. Podolyák9, A. Prochazka5, S. Rice9, A. Riego1, B. Rubio3, H. Schaffner5, Ch. Scheidenberger5,12, K. Smith5,20,21,23,24, E. Sokol25, K. Steiger14, B. Sun5, J.L. Tain3, M. Takechi5, D. Testov25,26, H. Weick5, E. Wilson9, J.S. Winfield5, R. Wood9, P. Woods11 and A. Yeremin25
Implantation detector SIMBA

Neutron detector BELEN-30
($\varepsilon_{1n} \approx 40\%$)

≈ 1 m

Neutron-rich 238U fragments

Shielding (PE + borated rubber)
Results: New half-lives

9 first $t_{1/2}$ measurements

First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond $N = 126$

R. Caballero-Folch, C. Domingo-Pardo, J. Agramont, A. Algora, F. Ameil, A. Arcones, Y. Ayyad, J. Benlliure, I. N. Borzov, M. Bowry, F. Calviño, C. Cano-Ott, G. Cortés, T. Davinson, I. Dillmann, A. Estrade,
- Different agreement before and behind shell closure:
 - New RHB+RQRPA (Marketin et al., 2015) better for N<126 proton-neutron relativistic quasiparticle phase approx. based on the Hartree-Bogoliubov model

<table>
<thead>
<tr>
<th>Element</th>
<th>Z / N</th>
<th>122</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>At</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>82</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl</td>
<td>81</td>
<td>0.12</td>
<td>0.00</td>
<td>0.89</td>
<td>0.94</td>
<td>0.44</td>
</tr>
<tr>
<td>Hg</td>
<td>80</td>
<td>2.37</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>79</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>78</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.74</td>
<td>0.42</td>
</tr>
<tr>
<td>Ir</td>
<td>77</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Os</td>
<td>76</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- FRDM+QRPA (Moeller et al.,

<table>
<thead>
<tr>
<th>Element</th>
<th>Z / N</th>
<th>122</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>At</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>80</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os</td>
<td>76</td>
<td>0.20</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

\[t_{1/2} \text{ overestimated} \]
Heaviest βn-emitters measured so far!

Apart of a measurement of 210Tl in 1962, the heaviest βn- emitter measured was 150La.

8 first P_{1n}-value measurements

Heaviest β-delayed neutron emitter measured so far.

First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond $N = 126$

September 12, 2016

Iris Dillmann - INPC Adelaide
Belen-48 at IGISOL/Finland

UPC Barcelona: R. Caballero-Folch, F. Calvino, G. Cortès, A. Riego, P. Salvador-Castiñeira

IFIC Valencia: J. Agramunt, J.L. Tain, A. Algora, V. Guadilla, A. Montaner-Pizá, S. Orrigo, B. Rubio

TRIUMF Vancouver: I. Dillmann

GSI Darmstadt: M. Marta

CIEMAT Madrid: E. Mendoza

U of Surrey: B. Gelletly

U of Brighton: Ch. Nobs

U of Istanbul: E. Ganioglu

U of Helsinki: J. Äysto

GSI experiments:
\[\varepsilon_{1n}(\text{BELEN-30}) = 40\% \]

IGISOL experiments:
Matrix 1: Hybrid
\[\varepsilon_{1n}(\text{BELEN-48}) = 40\% \]

Matrix 2: High efficiency
\[\varepsilon_{1n}(\text{BELEN-48}) = 60\% \]
\[\varepsilon_{2n}(\text{BELEN-48}) = 36\% \]
• IAEA top priority list for remeasurement of P_{1n} values for reactor physics:

The result of this study showed that the delayed neutron fraction was overestimated, and that top priority nuclides for new measurements are as follows:

1st priority: 86Ge, 85As, 91Br, 93Rb, 98m,98Y, 99Y, 135Sb, 139I

2nd priority: 88As, 96Rb, 105,106Nb, 137Sb, 136Te, 140I, 143,144Cs

I. Dillmann et al., IAEA(NDS)-0643 (2014)

• 2 weeks beamtime: measured 12 isotopes with high accuracy:

1 week: 95Rb, 98,98mY, 99Y
136,138Te, 135,137Sb, 137,138,139,140I

1 week 136Sb

I have measured 136Sb, the heaviest β2n emitter so far!
ALTO measurement not conclusive: \(P_{2n} \approx 1.4\% \) ?

Problem: isobaric contaminations

\[2n/1n = 3 \times 10^{-4} \]

Probably the observed two neutron activity belong to \(^{136}\text{Sb} \), then

\[P_{\beta-2n}^{^{136}\text{Sb}} \approx (1.4 \pm 0.2)\% \]

Predictions: \(P_{\beta-2n}^{^{136}\text{Sb}} = (10.6 - 0.28) \%^{*} \)

\(D.\text{Testov, ESP-RUS conference (2011)} \)
$^{136}\text{Sb} \beta 1n$ correlation
(6 days of beamtime)

$^{136}\text{Sb} \beta$-1n correlation

β – neutron correlation

7907 net events

Roger Caballero et al.,
presented at Zakopane (2016) and
Nuclear Data Conf. (Bruges 2016)

P$_{1n}$ results for $\beta 1n$ correlation of measured isotopes

This work

Previous exp.

FRDM+QRPA

Higher P$_{1n}$ than previously measured
After 6 days of beamtime, $\beta^2\text{n}$-events confirmed!

Preliminary result:
$$P_{2n} > 0.138\%$$

Heaviest $\beta^2\text{n}$-emitter so far!

Roger Caballero et al., presented at Zakopane (2016) and Nuclear Data Conf. (Bruges 2016)
The BRIKEN project (>2016)

“Beta-delayed neutron measurements at RIKEN for nuclear structure, astrophysics, and applications”
• >148 3He counters from Germany, Japan, Russia, Spain, USA
• 2 clovers (ORNL)
• Implantation detector AIDA (Edinburg, Daresbury)

$\varepsilon(1n) = 69\%$
$\varepsilon(2n) \approx 50\%$

More info at https://www.wiki.ed.ac.uk/display/BRIKEN/
Setup: July 2016
Commissioning: Nov. 2016
76Co-92Se (ca. 30 isotopes)

93Se-121Tc: 90 new P_{1n}, 20 new P_{2n}, 23 new half-lives

121Rh-152Ba (ca. 33 isotopes)

More to follow soon!

<table>
<thead>
<tr>
<th>Title</th>
<th>Spokepersons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement of β-delayed neutron emission probabilities relevant to the $A = 130$ r-process abundance peak</td>
<td>A.V. Estradé, G.Lorusso, F.Montes</td>
</tr>
<tr>
<td>Measurements of new β-delayed neutron emission properties around doubly-magic 78Ni</td>
<td>K.P. Rykaczewski, J.L. Tain, R.K. Grzywacz, I. Dillmann</td>
</tr>
<tr>
<td>Decay properties of r-process nuclei in deformed region around $A = 100 \sim 125$</td>
<td>S. Nishimura, A. Algora</td>
</tr>
</tbody>
</table>
• Recent boost of βn-program
 - Present focus on isotopes around $N=50-82$
 - Access to $N=126$: up to now only at GSI (-\rightarrow FAIR, FRIB) \Rightarrow soon also at RIKEN

• Huge program for measurements of neutron-rich key-isotopes planned in next few years
• Extrapolation to r-process regions require reliable theoretical models
Thank you!
Merci!
r-process abundances

\[N_r = N_\odot - N_s - N_p \]

measured

negligible

well-known

Connection between nuclear structure far off stability and observed abundances

\[N=50 \]

A≈100
Peak

N=82

Rare Earth Peak

N=126
List of isotopes implanted into SIMBA

Nuclei implants

Number of implants per nuclei

PT AU HG TL PB BI

200-205 Pt 203-209 Au 206-213 Hg 209-216 TI 212-219 Pb 215-222 Bi

September 12, 2016
Iris Dillmann - INPC Adelaide