#### The Search for Time-Reversal Violation in Radium Nuclei

M. R. Dietrich





Office of Science

MPC 2016

## Electric Dipole Moments and Discrete Symmetries

#### Electric dipole moment (EDM):

MDM

EDM

\* displacement vector from a particle's center of mass to its center of charge.

MDM

Time

Reversal

THPC 2016

\* violates both *P*-parity (spatial inversion) and *T*-time reversal symmetries:

EDM

Assuming the combination of *C*-charge conjugation (particle <-> antiparticle), *P*, and *T* is conserved:

- \* *T*-violation implies *CP*-violation
- \* EDMs are a very sensitive probe of *CP*-violation

Parity

Reversal





MPC 2016



#### EDM Measurements



#### EDM Measurements



## Radium EDM



A large quadrupole and octupole deformation results In an enhanced Schiff moment – Auerbach, Flambaum & Spevak (1996)

Relativistic atomic structure weakens the Schiff theorem, resulting in a strong enhancement with increasing Z  $(^{225}Ra/^{199}Hg \sim 3)$ 

– Dzuba, Flambaum, Ginges, Kozlov (2002)  $\overline{55 \text{ keV}} \Psi^{-} = (|\alpha\rangle - |\beta\rangle)/\sqrt{2}$ 

$$----\Psi^{+} = (|\alpha\rangle + |\beta\rangle)/\sqrt{2}$$

A closely spaced parity doublet enhances the appearance of parity violating terms in the underlying Hamiltonian – Haxton & Henley (1983)

$$S \propto \sum_{i \neq 0} \frac{\left\langle \psi_0 \left| \hat{S}_z \right| \psi_i \right\rangle \left\langle \psi_i \left| \hat{H}_{PT} \right| \psi_0 \right\rangle}{E_i - E_0} + c.c.$$

Enhancement Factor: EDM (<sup>225</sup>Ra) / EDM (<sup>199</sup>Hg)

| Skyrme Model | Isoscalar | Isovector | Isotensor |
|--------------|-----------|-----------|-----------|
| SIII         | 300       | 4000      | 700       |
| SkM*         | 300       | 2000      | 500       |
| SLy4         | 700       | 8000      | 1000      |

Schiff moment of <sup>225</sup>Ra, Dobaczewski, Engel (2005) Schiff moment of <sup>199</sup>Hg, Ban, Dobaczewski, Engel, Shukla (2010)



- Up to 10 mCi (250 ng, 7\*10^14 atoms) <sup>225</sup>Ra sources from: National Isotope Development Center (Oak Ridge, TN)
- Test source: 5 μCi (5 μg, 1.3\*10^16 atoms) <sup>226</sup>Ra
- •Integrated Atomic Beam Flux ~ 10^9/s <sup>226</sup>Ra, 10^7 10^8/s <sup>225</sup>Ra
- •Special Thanks: John Greene, HP Staff
- •Vapor pressure 10^13 cm<sup>-3</sup>... at 450C







#### Traveling Wave "Bus" ODT Loading Efficiency: 50-70%







# Transfer Atoms from "Bus" to "Holding" ODT



ODT→ODT Transfer: 70% Efficiency

R. H. Parker *et al.*, PRC **86**, 065503 (2012)

700 atoms



Imaging



## Experimental Cycle







## Improved Lifetime

- 6 mCi  $\rightarrow$  9 mCi
- $\tau$ : 2 s  $\rightarrow$  20 s after vacuum upgrade, traveling wave





## Systematics

| Effect (e-cm)                | 2016 Measurement    | <b>Improved Statstics</b> | Co-magnetometer     |
|------------------------------|---------------------|---------------------------|---------------------|
| E-squared Effects            | 1×10 <sup>-25</sup> | 7×10 <sup>-29</sup>       | 7×10 <sup>-31</sup> |
| B-field Correlations         |                     |                           |                     |
| ODT Power Corr.              | 6×10 <sup>-26</sup> | 9×10 <sup>-30</sup>       | 9×10 <sup>-32</sup> |
| Stark Interference           | 6×10 <sup>-26</sup> |                           |                     |
| Blue Power Corr.             | 7×10 <sup>-28</sup> | 1×10 <sup>-31</sup>       | 1×10 <sup>-31</sup> |
| Blue Freq. Corr.             | 4×10 <sup>-28</sup> | 8×10 <sup>-30</sup>       | 8×10 <sup>-30</sup> |
| E x v Effects                | 4×10 <sup>-28</sup> | 7×10 <sup>-30</sup>       | -                   |
| Leakage Current              | 3×10 <sup>-28</sup> | 9×10 <sup>-29</sup>       | -                   |
| E-field Ramping              | 9×10 <sup>-28</sup> | 2×10 <sup>-29</sup>       | -                   |
| Geometric Phase              | 3×10 <sup>-31</sup> | 7×10 <sup>-30</sup>       | 5×10 <sup>-33</sup> |
| Total                        | 2×10 <sup>-25</sup> | 5×10 <sup>-27</sup>       | 4×10 <sup>-29</sup> |
| M. Bishof et al. PRC 94, 025 | 1MP C 2016          |                           |                     |



## Improved Detection

F = 3/2  $^{1}P_{1}$  F = 1/2  $^{483} nm$  $^{1}S_{0}$  F = 1/2

Increase from 2.5 photons per Atom to 1000 photons per atom, For a nominal SNR improvement of 20.

<sup>3</sup>D<sub>1</sub>

## Increased Field



In Development: Niobium and Titanium: 300-500 kV/cm

Phys. Rev. Spec. Top. - Acc. and Beams, 15, 083502 (2012)

Present: Copper Electrodes, E = 70 kV/cm



MPC 2016

Factor of 5-7 increase in EDM Sensitivity

Together, a factor of 100 increase, bringing us to high 10<sup>-26</sup> or low 10<sup>-25</sup> e-cm level

### Effect on Standard Model Extensions



#### Better Living Through Statistics – Blue Slower



### Better Living Through Statistics – Long Term

#### **Presently available**

- Decay daughters of <sup>229</sup>Th, National Isotope Development Center, ORNL
  - <sup>225</sup>Ra: 10<sup>8</sup> /s

#### **Projected rates at FRIB (B. Sherrill, MSU)**

- Beam dump recovery with a <sup>238</sup>U beam
  - Parasitic operation, available ~ 150 days per year
  - <sup>225</sup>Ra: 6 x 10<sup>9</sup> /s ; <sup>223</sup>Rn: 8 x 10<sup>7</sup> /s; <sup>208-220</sup>Fr: 10<sup>9</sup> -10<sup>10</sup> /s.
- Dedicated running with a <sup>232</sup>Th beam
  - <sup>225</sup>Ra: 5 x 10<sup>10</sup> /s ; <sup>223</sup>Rn: 1 x 10<sup>9</sup> /s; <sup>208-220</sup>Fr: 10<sup>10</sup> /s;

FRIB will produce isotopes with enhanced sensitivity to fundamental symmetries, and provide opportunities for discovering physics beyond the Standard Model.

#### Effect on Standard Model Extensions



## Atom Trappers @ Argonne



DOE Office of Nuclear Physics

MPC 2016





### Schiff Moments and EDMs



#### Leonard Schiff's Theorem (1963):

- Any permanent dipole moment of the nucleus is perfectly shielded by its electron cloud
- True for point-like nuclei, non-relativistic electrons
- However, the "Schiff moment" is not shielded by this effect
  - Zero for point-like, spherical nuclei
- Arises from deformations in the nucleus or its constituent nucleons
- Very large in nuclei with both a quadrupole and octupole deformation
  Look for heavy nuclei with large quadrupole and octupole deformations!

### Effect on Standard Model Parameters

| BSM parameter                                                                                   | C <sub>τ</sub>     | $g_{\pi}^{(0)}$    | $g_{\pi}^{(1)}$      | d <sub>n</sub> (e cm) |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------|--------------------|----------------------|-----------------------|--|--|--|
| Current limits (95% CL):                                                                        | 2x10 <sup>-6</sup> | 8x10 <sup>-9</sup> | 1.2x10 <sup>-9</sup> | 1.2x10 <sup>-22</sup> |  |  |  |
| Improvement Factor (over current limit)                                                         |                    |                    |                      |                       |  |  |  |
| Current + next-gen neutron<br>[10 <sup>-28</sup> ] and <sup>129</sup> Xe [3x10 <sup>-29</sup> ] | 20                 | 8                  | 3                    | 6                     |  |  |  |
| Current + <sup>225</sup> Ra [ 10 <sup>-25</sup> e cm ]<br>[ 10 <sup>-26</sup> e cm ]            | 40<br>200          | 2<br>8             | 1.2<br>4             | 20<br>60              |  |  |  |

Adapted from T. Chupp and M. Ramsey-Musolf, PRC 91, 035502 (2015)

At that level, radium will improve significantly on the global sensitivity for all parameters



### Radium Atomic Structure



- Doppler Temperature: 7 uK
- I=1/2
- Blackbody Repump