
 

 

LATTICE QUANTUM CHROMODYNAMICS 
 
The strong interactions between quarks and gluons that produce the protons, neutrons, nuclei and 
the other hadrons found in nature are notoriously difficult to unravel. In contrast to electromagnetic 
and weak interactions, the strong interactions behave differently at different energies; quarks and 
gluons are the relevant degrees of freedom at high energies, while composite hadrons emerge at 
low energies. While quantum chromodynamics (QCD) has long been thought to be the theory of 
the strong interactions, direct comparison of its predictions with experiment has historically only 
been possible at high energies where deep inelastic scattering experiments have beautifully 
revealed the quark and gluon substructure of hadrons. In the last decade, this situation has 
changed dramatically and it is now possible to say that we have experimental confirmation of QCD 
at low energies relevant for hadronic and nuclear physics. With decades of research developments 
and advances in high-performance computing, the numerical approach of lattice QCD has matured 
to the stage where many properties of hadrons such as their masses and charge distributions are 
now able to be calculated and compared to experiment, providing new confirmations that QCD 
indeed describes the strong interactions. Having reached this point, the coming decade presents a 
golden opportunity for nuclear physics as further improvements in calculational methods and 
advances in high-performance computing will enable more precise calculations of many quantities 
and provide predictions with controlled uncertainties for as-yet-unmeasured quantities The impact 
of lattice QCD calculations in high energy physics has already been immense, with the 
determinations of most of the parameters of the Standard Model relying heavily on the results of 
lattice QCD calculations. The potential for contributions to the intrinsically more complex world of 
nuclear physics is equally high and investments in this field are now paying off. Beyond confirming 
QCD through comparison with experiment, lattice QCD calculations hold the promise of providing 
reliable calculations of hadronic and nuclear processes in situations where laboratory experiments 
are not possible, it provides guidance to the design of future experiments, and plays an essential 
role in analysis of upcoming experiments.  
 
Lattice QCD provides a rigorous definition of QCD in the low-energy, strong-coupling regime and, 
importantly, provides a numerical method with which to perform QCD calculations. As an 
intermediate step in lattice QCD, one considers a discretized version of QCD defined on a space-
time grid (most simply, a four dimensional hypercubic lattice) so as to make amenable to numerical 
calculations. The quark and gluon degrees 
of freedom are defined on this grid and the 
calculation is performed using Monte Carlo 
methods in which representative 
configurations of the quark and gluon 
degrees of freedom are generated with a 
distribution prescribed by QCD, and 
physical observables are then extracted 
from correlations in these samplings. An 
important feature of lattice QCD 
calculations is that is possible to fully 
quantify the statistical uncertainties from 
the Monte Carlo sampling and the 
systematic uncertainties from the finite 
volume and discretization associated with 
any given quantity. Furthermore, these 
uncertainties can be systematically 
reduced to any prescribed level of 
accuracy, limited only by computational 
resources and the available workforce. 
 
Large-scale lattice QCD calculations require a range of computational platforms. Leadership-class 
(capability) computing platforms are required to generate the representative samplings of the QCD 
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From Quarks to the Cosmos

Complexity of nuclear physics emerges from the 
Standard Model	

Same underlying physics at vastly different scales 	

EM, weak and strong (QCD) interactions	

Only relevant parameters: ΛQCD, mu,d,s, α➣

➣➣

➣➣

➣

protons

nuclei

neutron stars & supernovae



Quantitative QCD

QCD is the “strong force”:  
quarks and gluons interact strongly 	

Interaction strength depends  
on energy [Gross, Politzer, Wilczek, Nobel 2004]	

At high energy, can use 
perturbative theory 
 
 
(also works spectacularly in QED)	

At low energies: need another  
approach
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Quantum Chromodynamics

Lattice QCD: tool to deal with quarks and gluons	

Correlation functions as functional integral  
over quark and gluon d.o.f. on R4 
 

Discretise and compactify system	

Finite but large number of d.o.f  (1012)	

Integrate via importance sampling 
(average over important configurations)	

Undo the harm done in previous steps	

Lattice QCD ⇒ QCD

hOi =
Z

dAµdqdq̄O[q, q̄, A]e�SQCDhOi =
Z

dAµdqdq̄O[q, q̄, A]e�SQCD~



Spectroscopy

How do we calculate the proton mass?	

Create three quarks (correct quantum numbers) at a source and 
annihilate the three quarks at sink far from source	

QCD adds all the quark anti-quark pairs and gluons 
automatically: only eigenstates with correct q#’s propagate

time



Spectroscopy

Correlation decays  
exponentially with distance 
 
 
 
at late times 
 

Ground state mass revealed  
through “effective mass plot”

C(t) =

X

n

Zn exp(�Ent)

! Z0 exp(�E0t)

M(t) = ln


C(t)
C(t + 1)

�
t!1�! E0

all eigenstates with q#’s of proton



QCD Spectrum

[summary by A Kronfeld, 1209.3468]

30 years of developments	

Ground state hadron spectrum  
reproduced
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FIG. 15. Our results for the masses of charmed and/or bottom baryons, compared to the experimental results where available
[8, 10, 12]. The masses of baryons containing nb bottom quarks have been o↵set by �nb · (3000 MeV) to fit them into this plot.
Note that the uncertainties of our results for nearby states are highly correlated, and hyperfine splittings such as M⌦⇤

b
� M⌦b

can in fact be resolved with much smaller uncertainties than apparent from this figure (see Table XIX).

[Z Brown et al. PRD 2014]

Predictions for new states with 
controlled uncertainties

Recently determined 	
by LHCb experiment



QCD for Nuclear Physics

Move on to nuclei!	

In practice: a hard problem	

Physics gets complicated!	

At least two exponentially  
difficult challenges	

Noise: probabilistic method  
so statistical uncertainty grows  
exponentially with A	

Contraction complexity grows factorially



QCD for Nuclear Physics

Quarks need to be tied together in all possible ways	

Ncontractions = Nu!Nd!Ns!  
 

!

!

!

!

!

Managed using algorithmic trickery [WD & Savage, WD & Orginos; Doi & Endres]	

Study up to N=72 pion systems, A=5 nuclei



Unphysical nuclei

NPLQCD collaboration 

Case study QCD with unphysical 
quark masses      

mπ~800 MeV, mN~1,600 MeV

mπ~450 MeV, mN~1,200 MeV
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Unphysical nuclei

NPLQCD collaboration 

Case study QCD with unphysical 
quark masses      

mπ~800 MeV, mN~1,600 MeV

mπ~450 MeV, mN~1,200 MeV

1. Spectrum of light nuclei (A<5)  
[PRD 87 (2013), 034506] 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Unphysical nuclei

NPLQCD collaboration 

Case study QCD with unphysical 
quark masses      

mπ~800 MeV, mN~1,600 MeV

mπ~450 MeV, mN~1,200 MeV

1. Spectrum of light nuclei (A<5)  
[PRD 87 (2013), 034506] 

2. Nuclear structure: magnetic 
moments, polarisabilities (A<5) 
[PRL 113,  252001 (2014),PRD 92, 114502 (2015)] 



Unphysical nuclei

NPLQCD collaboration 

Case study QCD with unphysical 
quark masses      

mπ~800 MeV, mN~1,600 MeV

mπ~450 MeV, mN~1,200 MeV

1. Spectrum of light nuclei (A<5)  
[PRD 87 (2013), 034506] 

2. Nuclear structure: magnetic 
moments, polarisabilities (A<5) 
[PRL 113,  252001 (2014),PRD 92, 114502 (2015)] 

3. Nuclear reactions: np→dγ 
[PRL 115, 132001 (2015)]



Binding energies

[NPLQCD PRD 87 (2013), 034506 ]



Light nuclei

Light hypernuclear binding energies @ mπ=800 MeV
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[NPLQCD PRD 87 (2013), 034506 ]

More states bound; deeper bindings; more like quark nuggets?



Binding energies of few-nucleon systems  
 
 
 
 
 
 
 

!

Obviously more calculations needed at light masses
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Heavy quark universe	

Combining LQCD and pionless EFT [Barnea et al, PRL 2015] 
 
 
 
 
 
 
 
 
 
 
 

More detailed matchings possible (FV spectrum,…)

LQCD
EFT
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Nuclear matrix elements important in many 
contexts	

Probes of nuclear structure	

Neutrino-nucleus scattering	

Tests of fundamental symmetries	

Dark matter direct detection	

….

External currents and nuclei

http://www.hep.ucl.ac.uk/darkMatter/



External field method

Hadron/nuclear energies are modified by 
presence of fixed external fields	

Eg: fixed B field 

!

QCD calculations with multiple fields enable 
extraction of coefficients of response	

Magnetic moments, polarisabilities, …	

Not restricted to simple EM fields

7

C. Magnetic Field Strength Dependence of Energies

In a constant uniform background magnetic field, the energy eigenvalues of a hadron, h, either
a nucleon or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number
j
z

, are of the form

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|Q
h

eB|� µ
h

·B� 2⇡�(M0)
h

|B|2 � 2⇡�(M2)
h

hT̂
ij

B
i

B
j

i+ ... , (10)

where M
h

is the mass of the hadron, Q
h

is its charge in units of e, and n is the quantum number of
the Landau level that it occupies. For a nucleon or nucleus with spin j � 1

2 , there is a contribution
from the magnetic moment, µ

h

, that is linear in the magnetic field. The magnetic polarizability is

conveniently decomposed into multipoles, with �
h

⌘ �
(M0)
h

denoting the scalar polarizability and

�
(M2)
h

denoting the tensor polarizability (the latter contributes for hadrons with j � 1). T̂
ij

is a
traceless symmetric tensor operator which, when written in terms of angular momentum generators,
is of the form

T̂
ij

=
1

2


Ĵ
i

Ĵ
j

+ Ĵ
j

Ĵ
i

� 2

3
�
ij

Ĵ2

�
, (11)

and h...i in Eq. (10) denotes its expectation value. 3 The ellipses denote contributions that involve
three or more powers of the magnetic field and terms that are 1/M

h

suppressed. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hE
h

(B)i ⌘ 1

2j + 1

jX

jz=�j

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|QheB| � 2⇡�(M0)
h

|B|2 + ... , (12)

where the ellipsis denotes contributions of O(|B|4) and higher. For spin-j states, the energy
di↵erence between j

z

= ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy
eigenvalues are determined from the appropriate correlation functions, the C

h;jz(t;B) defined in
Eq. (9). The individual correlation functions associated with each state in each magnetic field are
examined, and the time intervals over which they are consistent with single exponential behavior
are determined. Representative correlation functions obtained in the magnetic fields with ñ =
0, 1,�2, 3 are shown in Fig. 1. Having identified these time intervals, the main analysis focuses on
ratios of these correlation functions,

R
h,jz(t;B) =

C
h;jz(t;B)

C
h;jz(t;B = 0)

t!1�! Z
h;jz(B) e��Eh;jz (B)t , (13)

3 For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB
2i =

�
j2z � 1

3 j(j + 1)
�
B2.

This vanishes for both the j = 0 and j = 1
2 states, and is hT̂ijBiBji = 1

3 for the j = 1, jz = ±1 states and

hT̂ijBiBji = � 2
3 for the j = 1, jz = 0 states.
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[NPLQCD PRL 113,  252001 (2014)]



Magnetic moments of nuclei

Magnetic field in z-direction (strength 
quantised by lattice periodicity)	

Magnetic moments from spin splittings	

!

Extract splittings from ratios of correlation 
functions  

!

Careful to be in single exponential region 
of each correlator
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Background electromagnetic fields have been used ex-
tensively to calculate electromagnetic properties of single
hadrons, such as the magnetic moments of the lowest-
lying baryons [6, 7, 8, 9, 10, 11, 12, 13, 14] and
electromagnetic polarizabilities of mesons and baryons
[9, 12, 15, 16, 17]. In order that the quark fields, with
electric charges Q

u

= +2
3 and Q

d,s

= � 1
3 for the up-,

down- and strange-quarks, respectively, satisfy spatially-
periodic boundary conditions in the presence of a back-
ground magnetic field, it is well-known [18] that the lat-
tice links, U

µ

(x), associated with the U

Q

(1) gauge field
are of the form

U

µ

(x) = e

i

6⇡Q

q

ñ

L

2 x1�

µ,2 ⇥ e

�i

6⇡Q

q

ñ

L

x2�

µ,1�

x1,L�1
, (1)

for quark of flavour q, where ñ must be an integer. The
uniform magnetic field, B, resulting from these links is

eB =
6⇡ñ

L

2
ẑ , (2)

where e is the magnitude of the electric charge and ẑ is
a unit vector in the x3-direction. In physical units, the
background magnetic fields exploited with this ensemble
of gauge-field configurations are e|B| ⇠ 0.046 |ñ| GeV2.
To optimize the re-use of light-quark propagators in the
production, calculations were performed for U

Q

(1) fields
with ñ = 0, 1,�2,+4. Four field strengths were found
to be su�cient for this initial investigation. With three
degenerate flavors of light quarks, and a traceless electric-
charge matrix, there are no contributions from coupling
of the B field to sea quarks at leading order in the elec-
tric charge. Therefore, the magnetic moments presented
here are complete calculations (there are no missing dis-
connected contributions).

The ground-state energy of a non-relativistic hadron
of mass M , and charge Qe in a uniform magnetic field is

E(B) = M +
|QeB|

2M

� µ · B
� 2⇡�

M0 |B|2 � 2⇡�

M2Tij

B

i

B

j

+ ... , (3)

where the ellipses denote terms that are cubic and higher
in the magnetic field, as well as terms that are 1/M

suppressed [19, 20]. The first contribution in eq. (3) is
the hadron’s rest mass, the second is the energy of the
lowest-lying Landau level, the third is from the interac-
tion of its magnetic moment, µ, and the fourth and fifth
terms are from its scalar and quadrupole magnetic polar-
izabilities, �

M0,M2, respectively (T
ij

is a traceless sym-
metric tensor [21]). The magnetic moment term is only
present for particles with spin, and �

M2 is only present
for j � 1. In order to determine µ using lattice QCD
calculations, two-point correlation functions associated
with the hadron or nucleus of interest in the j

z

= ±j

magnetic sub-states, C

(B)
j

z

(t), can be calculated in the
presence of background fields of the form given in Eq. (1)
with strength B = ẑ · B. The energies of ground-states
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FIG. 1: The correlator ratios R(B) as a function of time
slice for the various states (p, n, d, 3He, and 3H) for ñ =
+1,�2, +4. Fits to the ratios are also shown.

aligned and anti-aligned with the magnetic field, E

B

±j

,
will be split by spin-dependent interactions, and the dif-
ference, �E

(B) = E

B

+j

� E

B

�j

, can be extracted from the
correlation functions that we consider. The component
of �E

(B) that is linear in B determines µ via Eq. (3).
Explicitly, the energy di↵erence is determined from the
large time behaviour of

R(B) =
C

(B)
j

(t) C

(0)
�j

(t)

C

(B)
�j

(t) C

(0)
j

(t)
t!1�! Ze

��E

(B)
t

. (4)

Each term in this ratio is a correlation function with the
quantum numbers of the nuclear state that is being con-
sidered, which we compute using the methods of Ref. [3].
As discussed in Ref. [14], subtracting the contribution
from the correlation functions calculated in the absence
of a magnetic field reduces fluctuations in the ratio, en-
abling a more precise determination of the magnetic mo-
ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-

�E(B) ⌘ E(B)
+j � E(B)

�j = �2µ|B| + �|B|3 + . . .

[NPLQCD PRL 113,  252001 (2014)]

Different B fields



Magnetic moments of nuclei
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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FIG. 2: The calculated �E(B) of the proton and neutron
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as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.
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ñ = +1,�2,+4.
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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all of the individual correlators in the ratio exhibit sin-
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ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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C. Magnetic Field Strength Dependence of Energies

In a constant uniform background magnetic field, the energy eigenvalues of a hadron, h, either
a nucleon or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number
j
z

, are of the form

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|Q
h

eB|� µ
h

·B� 2⇡�(M0)
h

|B|2 � 2⇡�(M2)
h

hT̂
ij

B
i

B
j

i+ ... , (10)

where M
h

is the mass of the hadron, Q
h

is its charge in units of e, and n is the quantum number of
the Landau level that it occupies. For a nucleon or nucleus with spin j � 1

2 , there is a contribution
from the magnetic moment, µ

h

, that is linear in the magnetic field. The magnetic polarizability is

conveniently decomposed into multipoles, with �
h

⌘ �
(M0)
h

denoting the scalar polarizability and

�
(M2)
h

denoting the tensor polarizability (the latter contributes for hadrons with j � 1). T̂
ij

is a
traceless symmetric tensor operator which, when written in terms of angular momentum generators,
is of the form

T̂
ij

=
1

2


Ĵ
i

Ĵ
j

+ Ĵ
j

Ĵ
i

� 2

3
�
ij

Ĵ2

�
, (11)

and h...i in Eq. (10) denotes its expectation value. 3 The ellipses denote contributions that involve
three or more powers of the magnetic field and terms that are 1/M

h

suppressed. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hE
h

(B)i ⌘ 1

2j + 1

jX

jz=�j

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|QheB| � 2⇡�(M0)
h

|B|2 + ... , (12)

where the ellipsis denotes contributions of O(|B|4) and higher. For spin-j states, the energy
di↵erence between j

z

= ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy
eigenvalues are determined from the appropriate correlation functions, the C

h;jz(t;B) defined in
Eq. (9). The individual correlation functions associated with each state in each magnetic field are
examined, and the time intervals over which they are consistent with single exponential behavior
are determined. Representative correlation functions obtained in the magnetic fields with ñ =
0, 1,�2, 3 are shown in Fig. 1. Having identified these time intervals, the main analysis focuses on
ratios of these correlation functions,

R
h,jz(t;B) =

C
h;jz(t;B)

C
h;jz(t;B = 0)

t!1�! Z
h;jz(B) e��Eh;jz (B)t , (13)

3 For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB
2i =

�
j2z � 1

3 j(j + 1)
�
B2.

This vanishes for both the j = 0 and j = 1
2 states, and is hT̂ijBiBji = 1

3 for the j = 1, jz = ±1 states and

hT̂ijBiBji = � 2
3 for the j = 1, jz = 0 states.
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from the magnetic moment, µ

h

, that is linear in the magnetic field. The magnetic polarizability is

conveniently decomposed into multipoles, with �
h

⌘ �
(M0)
h

denoting the scalar polarizability and

�
(M2)
h

denoting the tensor polarizability (the latter contributes for hadrons with j � 1). T̂
ij

is a
traceless symmetric tensor operator which, when written in terms of angular momentum generators,
is of the form

T̂
ij

=
1

2


Ĵ
i

Ĵ
j

+ Ĵ
j

Ĵ
i

� 2

3
�
ij

Ĵ2

�
, (11)

and h...i in Eq. (10) denotes its expectation value. 3 The ellipses denote contributions that involve
three or more powers of the magnetic field and terms that are 1/M

h

suppressed. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hE
h

(B)i ⌘ 1

2j + 1

jX

jz=�j

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|QheB| � 2⇡�(M0)
h

|B|2 + ... , (12)

where the ellipsis denotes contributions of O(|B|4) and higher. For spin-j states, the energy
di↵erence between j

z

= ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy
eigenvalues are determined from the appropriate correlation functions, the C

h;jz(t;B) defined in
Eq. (9). The individual correlation functions associated with each state in each magnetic field are
examined, and the time intervals over which they are consistent with single exponential behavior
are determined. Representative correlation functions obtained in the magnetic fields with ñ =
0, 1,�2, 3 are shown in Fig. 1. Having identified these time intervals, the main analysis focuses on
ratios of these correlation functions,

R
h,jz(t;B) =

C
h;jz(t;B)

C
h;jz(t;B = 0)

t!1�! Z
h;jz(B) e��Eh;jz (B)t , (13)

3 For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB
2i =

�
j2z � 1

3 j(j + 1)
�
B2.

This vanishes for both the j = 0 and j = 1
2 states, and is hT̂ijBiBji = 1

3 for the j = 1, jz = ±1 states and

hT̂ijBiBji = � 2
3 for the j = 1, jz = 0 states.
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np→dγ in pionless EFT

Cross-section at threshold calculated in  
pionless EFT	

!

EFT expansion at LO given by mag. moments  
NLO contributions from short-distance  
two nucleon operators 
 

!

Phenomenological description with  
1% accuracy for E< 1MeV	

Short distance (MEC) contributes ~10%

FIG. 6. The Feynman diagrams giving the leading order contribution to np → dγ in EFT(π/).

The solid lines denote nucleons and the wavy lines denote photons. The light solid circles correspond
to the nucleon magnetic moment coupling of the photon. The crossed circle represents an insertion
of the deuteron interpolating field .

where e = |e| is the magnitude of the electron charge, N is the doublet of nucleon spinors,
ϵ(γ) is the polarization vector for the photon, ϵ(d) is the polarization vector for the deuteron
and k is the outgoing photon momentum. The term with coefficient X corresponds to
capture from the 3S1 channel while the term with coefficient Y corresponds to capture from
the 1S0 channel. For convenience, we define dimensionless variables X̃ and Ỹ , by

X = i
2

MN

√

π

γ3
X̃ , Y = i

2

MN

√

π

γ3
Ỹ . (3.45)

Both X̃ and Ỹ have the Q expansions, X̃ = X̃(0) +X̃(1) + ..., and Ỹ = Ỹ (0) + Ỹ (1) + ..., where
a superscript denotes the order in the Q expansion. The capture cross section for very low
momentum neutrons with speed |v| arising from eq. (3.45) is

σ =
8παγ3

M5
N |v|

[

2|X̃|2 + |Ỹ |2
]

, (3.46)

where α is the fine-structure constant.
At leading order in EFT(π/) the amplitudes receive contributions from the Feynman

diagrams shown in fig. (6) and are

Ỹ (0) = κ1

(

1− γa(1S0)
)

, X̃(0) = 0 , (3.47)

where a(1S0) = −23.714 ± 0.013 fm, is the scattering length in the 1S0 channel, and κ1 is
the isovector magnetic moment defined in eq. (3.26). At next-to-leading order, NLO, the
contribution arising from the Feynman diagrams shown in fig. (7) and fig. (8) is found to be
[17]

Ỹ (1) =
1

2
κ1γρd

(

1− γa(1S0)
)
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FIG. 8. Local counterterm contribution to the amplitude for n + p→ d + γ at NLO. The solid
lines denote nucleons and the wavy lines denote photons. The solid circle corresponds to an inser-
tion of the π/L1 operator. The crossed circle represents an insertion of the deuteron interpolating

field.

The cross section for this process has been measured very precisely for an incident neutron
speed of |v| = 2200 m/s to be σexpt = 334.2±0.5 mb [56]. In EFT(π/) we find a cross section
at NLO, at this incident neutron speed, of

σπ/ =
(

287.1 + 6.51 π/L1

)

mb , (3.50)

where π/L1 is in units of fm4 and is renormalized µ = mπ. Requiring σπ/ to reproduce the
measured cross section σexpt fixes π/L1 = 7.24 fm4.

We see that even in the theory without dynamical pions, one is able to recover the cross
section for radiative neutron capture at higher orders. It is clear that in this theory the four-
nucleon-one-photon operators play a central role in reproducing the low energy observables.
In the theory with pions, one can see by examining the contributing Feynman diagrams [17],
that in the limit that the momentum transferred to the photon is small the pion propagators
can be replaced by 1/m2

π, while keeping the derivative structure in the numerator. This
contribution, as well as the contribution from all hadronic exchanges, is reproduced order
by order in the momentum expansion by the contributions from local multi-nucleon-photon
interactions. From the calculations in the theory with dynamical pions, the value of π/L1 is
not saturated by pion exchange currents as these contributions are divergent, and require
the presense of the L1 operator [17]. Therefore, estimates of π/L1 based on meson exchanges
alone are model dependent.

The effective range calculation of np → dγ was first performed by Bethe and Longmire
[32] and revisited by Noyes [57]. After correcting the typographical errors in the expression
for σ that appears in the Noyes article, the expressions in the two papers [32,57] are identical,

σ(ER) =
2πα κ2

1 γ
6 (a(1S0))2 a(3S1)

|v|M5
N (2 − γa(3S1))

(

1 +
1

γa(3S1)
−

2

γa(1S0)
−

1

2
γr(1S0)

0

)2

, (3.51)

which when expanded in powers of Q is

σ(ER) =
8παγ3

|v|M5
N

[

κ2
1(1− γa(1S0))2

+
1

2
γ
(

ρd − r(1S0)
0

)

κ2
1(1− γa(1S0))2 +

1

2
γ
(

ρd + r(1S0)
0

)

κ2
1(1− γa(1S0)) + ...

]

. (3.52)

From this expansion, one finds that

23

FIG. 7. Graphs contributing to the amplitude for n + p → d + γ at subleading order due to

insertions of the C2 operators. The solid lines denote nucleons and the wavy lines denote photons.
The light solid circles correspond to the nucleon magnetic moment coupling of the photon. The
solid square denotes a C2 operator. The crossed circle represents an insertion of the deuteron

interpolating field . The last graph denotes the contribution from wavefunction renormalization.

−
MN

4π
γ2a(1S0) (µ− γ)
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a(1S0)
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⎡
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κ1π
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2
+

ρd
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⎞
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⎤

⎦ , (3.48)

where r(1S0)
0 is the effective range in the 1S0 channel. We have not computed X̃(1) as it can

only contribute at NNLO since X̃(0) vanishes. The RG evolution of π/L1 was discussed at
length in [17], where it was made clear that its behavior is much different from π/L2, the
counterterm for the deuteron magnetic moment. In the absence of pions we find

µ
d

dµ

⎡

⎢

⎣

π/L1 − 1
2κ1

(

π/C(3S1)
2,−2 + π/C(1S0)

2,−2

)

π/C(1S0)
0,−1

π/C(3S1)
0,−1

⎤

⎥

⎦
= 0 , (3.49)

in order that the cross section for NN → NNγ with the initial nucleons in the 1S0 channel
and the final nucleons in the 3S1 channel be independent of the renormalization scale at all
energies. The analytic structure of the amplitude ensures that the capture cross section will
be µ-independent, if NN → NNγ is µ-independent.
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FIG. 8. Local counterterm contribution to the amplitude for n + p→ d + γ at NLO. The solid
lines denote nucleons and the wavy lines denote photons. The solid circle corresponds to an inser-
tion of the π/L1 operator. The crossed circle represents an insertion of the deuteron interpolating

field.

The cross section for this process has been measured very precisely for an incident neutron
speed of |v| = 2200 m/s to be σexpt = 334.2±0.5 mb [56]. In EFT(π/) we find a cross section
at NLO, at this incident neutron speed, of

σπ/ =
(

287.1 + 6.51 π/L1

)

mb , (3.50)

where π/L1 is in units of fm4 and is renormalized µ = mπ. Requiring σπ/ to reproduce the
measured cross section σexpt fixes π/L1 = 7.24 fm4.

We see that even in the theory without dynamical pions, one is able to recover the cross
section for radiative neutron capture at higher orders. It is clear that in this theory the four-
nucleon-one-photon operators play a central role in reproducing the low energy observables.
In the theory with pions, one can see by examining the contributing Feynman diagrams [17],
that in the limit that the momentum transferred to the photon is small the pion propagators
can be replaced by 1/m2

π, while keeping the derivative structure in the numerator. This
contribution, as well as the contribution from all hadronic exchanges, is reproduced order
by order in the momentum expansion by the contributions from local multi-nucleon-photon
interactions. From the calculations in the theory with dynamical pions, the value of π/L1 is
not saturated by pion exchange currents as these contributions are divergent, and require
the presense of the L1 operator [17]. Therefore, estimates of π/L1 based on meson exchanges
alone are model dependent.

The effective range calculation of np → dγ was first performed by Bethe and Longmire
[32] and revisited by Noyes [57]. After correcting the typographical errors in the expression
for σ that appears in the Noyes article, the expressions in the two papers [32,57] are identical,

σ(ER) =
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From this expansion, one finds that
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np ! d�, and the photo-disintegration
processes �(⇤)d ! np. In nuclear potential models, such contributions are described by phenomeno-
logical meson-exchange currents, while in the present work, they are determined directly from the
quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple
background magnetic fields are performed at two values of the quark masses, corresponding to pion
masses of m⇡ ⇠ 450 and 806 MeV, and are combined with pionless nuclear e↵ective field theory to
determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross sec-
tion of �lqcd(np ! d�) = 332.4( +5.4

�4.7 ) mb is obtained at an incident neutron speed of v = 2, 200 m/s,

consistent with the experimental value of �expt(np ! d�) = 334.2(0.5) mb.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

The radiative capture process, np ! d�, plays a crit-
ical role in big-bang nucleosynthesis (BBN) as it is the
starting point for the chain of reactions that form most
of the light nuclei in the cosmos. Studies of radia-
tive capture [1–3], and the inverse processes of deuteron
electro- and photo-disintegration, �(⇤)

d ! np [4–7], have
constrained these cross-sections and have also provided
critical insights into the interactions between nucleons
and photons. They conclusively show the importance of
non-nucleonic degrees of freedom in nuclei, which arise
from meson-exchange currents (MECs) in the context
of nuclear potential models [8, 9]. Nevertheless, in the
energy range relevant for BBN, experimental investiga-
tions are challenging [10]. For the analogous weak in-
teractions of multi-nucleon systems, considerably less is
known from experiment but these processes are equally
important. The weak two-nucleon interactions currently
contribute the largest uncertainty in calculations of the
rate for proton-proton fusion in the Sun [11–17], and in
neutrino-disintegration of the deuteron [18], which is a
critical process needed to disentangle solar neutrino os-
cillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determi-
nations from the underlying theory of strong interaction,
quantum chromodynamics (QCD), are fundamental to
future theoretical progress. Such determinations are also
of significant phenomenological importance for calibrat-
ing long-baseline neutrino experiments and for investiga-

tions of double beta decay in nuclei. In this Letter, we
take the initial steps towards meeting this challenge and
present the first lattice QCD (LQCD) calculations of the
np ! d� process. The results are in good agreement with
experiment and show that QCD calculations of the less
well-determined electroweak processes involving light nu-
clei are within reach. Similarly, the present calculations
open the way for QCD studies of light nuclear matrix ele-
ments of scalar [19] (and other) currents relevant for dark
matter direct detection experiments and other searches
for physics beyond the Standard Model.
The low-energy cross section for np ! d� is conve-

niently written as a multipole expansion in the electro-
magnetic (EM) field [20, 21],

�(np ! d�) =
e

2(�2

0

+ |p|2)3
M

4

�

3

0

|p| |X̃
M1

|2 + ... , (1)

where X̃

M1

is the M1 amplitude, �
0

is the binding mo-
mentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribu-
tion from E1 and higher-order multipoles (higher multi-
poles can be included systematically and improve the re-
liability of the description [22], but are not relevant at the
level of precision of the present work). In a pionless e↵ec-
tive field theory expansion [23–25], employing dibaryon
fields to resum e↵ective range contributions [26, 27], the

2

leading-order (LO) and next-to-leading order (NLO) con-
tributions lead to the M1 amplitude [27, 28]
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1

encapsulates the short-

distance two-nucleon interactions through l̃

1

, but also de-
pends on 

1

. It is well established that gauge-invariant
EM two-nucleon interactions (and direct photon-pion
couplings in pionful e↵ective field theories) [12, 18, 22–
24, 29–32] must be included in order to determine radia-
tive capture and breakup cross-sections to a precision of
better than ⇠ 10%.

The only quantity in Eqs. (1) and (2) that is not deter-
mined by kinematics, single-nucleon properties or scat-
tering parameters, is l

1

. In this work, we use LQCD
to calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the I

z

= j

z

= 0 np states in the
1

S

0

and 3

S

1

–3D
1

channels, providing sensitivity to the
EM interactions. The deuteron and dineutron ground
states are nearly degenerate at both pion masses used in
the present calculation [33], and the two-nucleon sector
exhibits an approximate spin-flavor SU(4) symmetry (as
predicted by the large-N

c

limit of QCD [34]). In this case,
it can be shown [35] that the energy di↵erence between
the two eigenstates depends upon l̃

1

as

�E

3
S1,

1
S0
(B) = 2

⇣


1

+ �

0

Z

2

d

l̃

1

⌘
e

M

|B|+O(|B|2) , (3)

where B is the background magnetic field. It is con-
venient to focus on the combination L

1

= �

0

Z

2

d

l̃

1

that
characterizes the two-nucleon contributions.

Our LQCD calculations were performed on two en-
sembles of gauge-field configurations generated with a
clover-improved fermion action [36] and a Lüscher-Weisz
gauge action [37]. The first ensemble had N

f

= 3 de-
generate light-quark flavors with masses tuned to the
physical strange quark mass, producing a pion of mass
m

⇡

⇠ 806 MeV and used a volume of L3 ⇥T = 323 ⇥ 48.
The second ensemble had N

f

= 2 + 1 flavors with the
same strange quark mass and degenerate up and down
quarks with masses corresponding to a pion mass of
m

⇡

⇠ 450 MeV and a volume of L

3 ⇥ T = 323 ⇥ 96.
Both ensembles had a gauge coupling of � = 6.1, cor-
responding to a lattice spacing of a ⇠ 0.12 fm. Back-
ground EM (U

Q

(1)) gauge fields giving rise to uniform
magnetic fields along the x

3

-axis were multiplied onto

each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propa-
gators, which were then contracted to form the requi-
site nuclear correlation functions using the techniques
of Ref. [38]. Calculations were performed on ⇠ 1, 000
gauge-field configurations at the SU(3) point and ⇠ 650
configurations at the lighter pion mass, each taken at in-
tervals of 10 hybrid Monte-Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33, 39, 40] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as
the magnetic moments of the lowest-lying baryons [41–
49] and light nuclei [40], and the polarizabilities of mesons
and baryons [49, 50]. The quark fields have electric
charges Q

u

= +2/3 and Q

d,s

= �1/3 for the up-, down-
and strange-quarks, respectively, and background mag-
netic fields are required to be quantized [51] in order that
the magnetic flux is uniform throughout the lattice. The

link fields, U (Q)

µ

(x), associated with the background field
are of the form

U

(Q)

µ

(x) = e

i

6⇡Q

q

ñ

L

2 x1�µ,2 ⇥ e

�i

6⇡Q

q

ñ

L

x2�µ,1�x1,L�1
,(4)

for quark flavor q, where ñ is an integer. The uni-
form magnetic field resulting from these links is e B =
6⇡ñ/L2ẑ, where e is the magnitude of the electric charge
and ẑ is a unit vector in the x

3

-direction. In physical
units, the background magnetic fields used with these en-
sembles of gauge configurations are e|B| ⇠ 0.05|ñ| GeV2.
To optimize the re-use of light-quark propagators in the
calculations, U

Q

(1) fields with ñ = 0, 1,�2, 4 were used.
At the SU(3) symmetric point, additional calculations
were performed with ñ = 3,�6, 12.
With three degenerate flavors of light quarks, and a

traceless electric-charge matrix, there are no contribu-
tions from the magnetic field coupling to sea quarks at
the SU(3) point at leading order in the electric charge.
This is not the case for the m

⇡

⇠ 450 MeV calculations
because of flavor SU(3) breaking. However, L

1

is an
isovector quantity in which sea quark contributions can-
cel (the up and down sea quarks used in this work are
degenerate) so it is correctly determined by the present
calculations.
In this work, we focus on the I

z

= j

z

= 0 coupled-
channel neutron-proton systems. Our analysis follows
that of Ref. [35] which presents results on the m

⇡

⇠806
MeV ensemble, and we direct the reader to that work
for more detail regarding the interpolating operators and
statistical analysis methods that are used. A matrix of
correlation functions generated from source and sink op-

2

leading-order (LO) and next-to-leading order (NLO) con-
tributions lead to the M1 amplitude [27, 28]
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1

. It is well established that gauge-invariant
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1

. In this work, we use LQCD
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A magnetic field mixes the I

z

= j
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= 0 np states in the
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S
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and 3

S
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–3D
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channels, providing sensitivity to the
EM interactions. The deuteron and dineutron ground
states are nearly degenerate at both pion masses used in
the present calculation [33], and the two-nucleon sector
exhibits an approximate spin-flavor SU(4) symmetry (as
predicted by the large-N
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limit of QCD [34]). In this case,
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where B is the background magnetic field. It is con-
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characterizes the two-nucleon contributions.
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f
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m
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⇠ 806 MeV and used a volume of L3 ⇥T = 323 ⇥ 48.
The second ensemble had N

f

= 2 + 1 flavors with the
same strange quark mass and degenerate up and down
quarks with masses corresponding to a pion mass of
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⇠ 450 MeV and a volume of L

3 ⇥ T = 323 ⇥ 96.
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calculate electromagnetic properties of hadrons, such as
the magnetic moments of the lowest-lying baryons [41–
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u
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= �1/3 for the up-, down-
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netic fields are required to be quantized [51] in order that
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are of the form
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for quark flavor q, where ñ is an integer. The uni-
form magnetic field resulting from these links is e B =
6⇡ñ/L2ẑ, where e is the magnitude of the electric charge
and ẑ is a unit vector in the x

3

-direction. In physical
units, the background magnetic fields used with these en-
sembles of gauge configurations are e|B| ⇠ 0.05|ñ| GeV2.
To optimize the re-use of light-quark propagators in the
calculations, U

Q

(1) fields with ñ = 0, 1,�2, 4 were used.
At the SU(3) symmetric point, additional calculations
were performed with ñ = 3,�6, 12.
With three degenerate flavors of light quarks, and a

traceless electric-charge matrix, there are no contribu-
tions from the magnetic field coupling to sea quarks at
the SU(3) point at leading order in the electric charge.
This is not the case for the m

⇡

⇠ 450 MeV calculations
because of flavor SU(3) breaking. However, L

1

is an
isovector quantity in which sea quark contributions can-
cel (the up and down sea quarks used in this work are
degenerate) so it is correctly determined by the present
calculations.
In this work, we focus on the I

z

= j

z

= 0 coupled-
channel neutron-proton systems. Our analysis follows
that of Ref. [35] which presents results on the m

⇡

⇠806
MeV ensemble, and we direct the reader to that work
for more detail regarding the interpolating operators and
statistical analysis methods that are used. A matrix of
correlation functions generated from source and sink op-

Leading order

Next-to-leading order
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coupled 1S0–3S1 np sector. This latter combination is probed through the determinant condition [59]
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�
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 |eB|l1
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+
S+ � S�
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, (19)

where �1,3 are the phase-shifts in the 1S0 and 3S1 channels, respectively. Solutions to this equation
correspond to the energy eigenvalues of the system, with the functions S± given by

S± ⌘ S

✓
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4⇡2
(p2 ± e|B|1)

◆
, (20)

where

S(⌘) =

|n|<⇤X

n 6=0

1

|n|2 � ⌘
� 4⇡⇤ (21)

is the three-dimensional Riemann-zeta function associated with the A+
1 irreducible representation

of the cubic group [61–63].
At the quark masses used in these calculations, the deuteron and bound dineutron are ap-

proximately degenerate [28], and have scattering lengths, a1,3, and e↵ective ranges, r1,3, that are
similar (a1 ⇠ a3 = a and r1 ⇠ r3 = r) [29]. 8 Because of this, Eq. (19) simplifies to I HAVE
CHANGED THIS - CHECK IT

p cot � =
1

⇡L
S± ± e|B|l1

2
(22)

Expanding this for small |eB|, the shifts of the two eigenstates are
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where Z
d

= 1/
p
1� �0r is the square-root of the residue of the deuteron propagator at the pole and

the ellipsis denotes terms that are higher order in the strength of the magnetic field. In Eq. (23),
the deviations of the energy shifts from their naive single particle values are defined using

L1 = �0Z
2
d

(l1 + r1) . (24)

To numerically study this system, it proves useful to first construct the correlation matrix

C(t;B) =

 
C3
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3
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(t;B) C3

S1,
1
S0
(t;B)

C1
S0,

3
S1
(t;B) C1

S0,
1
S0
(t;B)

!
, (25)

where the matrix elements C
A,B

(t;B) are constructed from source and sink operators associated
with the A,B 2 {1S0,

3S1} channels. The generalized eigenvalue problem, defined by this correlation
matrix, can be solved to extract the (diagonalized) principal correlation functions [64], energies
and energy di↵erences. That is, solutions of the system

[C(t0;B)]�1/2C(t;B)[C(t0;B)]�1/2v = �(t;B)v (26)

8 The di↵erence in binding energies is �3S1,1S0
= E1S0

�E3S1
= 5.8(1.4) MeV [28]; provided the di↵erence in energies

is small compared to the shifts induced by the magnetic field, it can be neglected. If it cannot be neglected, the
determinant condition must be solved numerically.
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are sought, where the eigenvalues are the principle correlation functions �±(t;B) = exp[�(Ē ±
�E3

S1,
1
S0
)t] with average energy Ē and energy di↵erence �E3

S1,
1
S0
. The parameter t0 can be

chosen to stabilize the extraction but has little numerical e↵ect in the current results. To extract
the response to a background magnetic field, the ratio of the principle correlation functions

R3
S1,

1
S0
(t;B) =

�+(t;B)

��(t;B)
t!1�! Ẑ exp

⇥
2 �E3

S1,
1
S0
t
⇤
, (27)

permits a refined determination of the energy di↵erence �E3
S1,

1
S0
, significantly reducing correlated

fluctuations, where Ẑ is a t-independent constant.
Figure 6 shows the e↵ective mass plots of the original correlation functions of the coupled

channel system in Eq. (25) according to their source and sink type. This figure also shows the
e↵ective masses of the principal correlation functions that are determined by solving the generalized
eigenvalue problem, Eq. (26), for t0 = 5. The diagonalization of the matrix of correlation functions
in Eq. (25) is particularly e↵ective in this case because the states are orthogonal in the limit of
vanishing magnetic field. In most cases, plateau behavior is visible in both principal correlation
functions, indicating that the lowest two eigenvalues of the system can be extracted. Given this,
focus is placed on the ratios R3

S1,
1
S0
(t;B) in the region where the principal correlation functions

are consistent with single exponential behaviour. Figure 7 shows this ratio for all magnetic field
strengths along with the associated single exponential fits. Analysis of these ratios in the coupled
system is performed with the same methods used to analyze the ratios in the unmixed channels.

As in Eq. (17), the calculated correlation functions associated with nucleons and nuclei share,
to a large degree, the same quantum fluctuations. This makes it possible to determine di↵erences
between properties of the np system and those of a free neutron and proton with more precision
than the individual properties. In the current context, the ratio

�R3
S1,

1
S0
(t;B) =

R3
S1,

1
S0
(t;B)

�R
p

(t;B)/�R
n

(t;B)
, (28)

decays with a characteristic exponent 2�E3
S1,

1
S0
(B)� (E

p," �E
p,#) + (E

n," �E
n,#) = 2|eB|L1/M ,

permitting direct access to deviations from single nucleon physics, where the �R
h

(t;B) are given
in Eq. (15). Figure 8 shows these ratios for each field strength, from which the energy shifts can
be extracted with remarkable precision.

C. Magnetic Field Strength Dependence: General Strategies

Having extracted the energies and energy-di↵erences as a function of the magnetic field strength,
the remaining task is to use these them to determine the magnetic properties of the nucleons and
nuclei through fits to the expected forms shown in Eq. (10). The fits and extracted properties
of each nucleon and nucleus are presented individually in the following subsection; the general
features of the analysis, and highlights of the di�culties encountered in confronting Landau levels,
are first explained.

In dimensionless units, the form used for the fits (B = Bez) is

a�E
h;jz =

q
a2M2

h

+ (2n
L

+ 1)Q
h

a2|e B|� aM
h

� µ̂
h

eaM
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j
z

a2|e B|

+�̂
h

(a2|e B|)2 + �̂
(2)
h

(j2
z

� 1

3
j(j + 1))(a2|e B|)2 + j

z

�̂
h

(a2|e B|)3 + �̂
h

(a2|e B|)4 , (29)
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fluctuations, where Ẑ is a t-independent constant.
Figure 6 shows the e↵ective mass plots of the original correlation functions of the coupled

channel system in Eq. (25) according to their source and sink type. This figure also shows the
e↵ective masses of the principal correlation functions that are determined by solving the generalized
eigenvalue problem, Eq. (26), for t0 = 5. The diagonalization of the matrix of correlation functions
in Eq. (25) is particularly e↵ective in this case because the states are orthogonal in the limit of
vanishing magnetic field. In most cases, plateau behavior is visible in both principal correlation
functions, indicating that the lowest two eigenvalues of the system can be extracted. Given this,
focus is placed on the ratios R3

S1,
1
S0
(t;B) in the region where the principal correlation functions

are consistent with single exponential behaviour. Figure 7 shows this ratio for all magnetic field
strengths along with the associated single exponential fits. Analysis of these ratios in the coupled
system is performed with the same methods used to analyze the ratios in the unmixed channels.

As in Eq. (17), the calculated correlation functions associated with nucleons and nuclei share,
to a large degree, the same quantum fluctuations. This makes it possible to determine di↵erences
between properties of the np system and those of a free neutron and proton with more precision
than the individual properties. In the current context, the ratio

�R3
S1,

1
S0
(t;B) =

R3
S1,

1
S0
(t;B)

�R
p

(t;B)/�R
n

(t;B)
, (28)

decays with a characteristic exponent 2�E3
S1,

1
S0
(B)� (E

p," �E
p,#) + (E

n," �E
n,#) = 2|eB|L1/M ,

permitting direct access to deviations from single nucleon physics, where the �R
h

(t;B) are given
in Eq. (15). Figure 8 shows these ratios for each field strength, from which the energy shifts can
be extracted with remarkable precision.

C. Magnetic Field Strength Dependence: General Strategies

Having extracted the energies and energy-di↵erences as a function of the magnetic field strength,
the remaining task is to use these them to determine the magnetic properties of the nucleons and
nuclei through fits to the expected forms shown in Eq. (10). The fits and extracted properties
of each nucleon and nucleus are presented individually in the following subsection; the general
features of the analysis, and highlights of the di�culties encountered in confronting Landau levels,
are first explained.

In dimensionless units, the form used for the fits (B = Bez) is

a�E
h;jz =

q
a2M2

h

+ (2n
L

+ 1)Q
h

a2|e B|� aM
h

� µ̂
h

eaM
N

j
z

a2|e B|

+�̂
h

(a2|e B|)2 + �̂
(2)
h

(j2
z

� 1

3
j(j + 1))(a2|e B|)2 + j

z

�̂
h

(a2|e B|)3 + �̂
h

(a2|e B|)4 , (29)

3

FIG. 1: The double ratios of the two principal correlators
are shown for m⇡ ⇠ 450 MeV for the three magnetic field
strengths. The bands correspond to the single-exponential fits
to the correlator and the associated statistical uncertainty.

FIG. 2: LQCD calculations of the energy-splittings between
the two lowest-lying eigenstates, with the single-nucleon con-
tributions removed, as a function of ñ, along with the asso-
ciated fits. The lower (blue) set of points correspond to the
m⇡ ⇠ 450 MeV ensemble and the upper (green) points to
m⇡ ⇠ 806 MeV. The slope of the sets of points is propor-
tional to L
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is diagonalized to yield “principal correlators”, �±(t;B),
corresponding to the eigenstates of the coupled sys-
tem. In all cases, the principal correlators exhibit single-
exponential behavior at times where statistical uncertain-
ties are manageable. To highlight the di↵erence arising
from purely two-body e↵ects, a ratio of ratios of the prin-
cipal correlators to the appropriate single particle corre-
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to the physical pion
mass (dashed line) in natural nuclear magnetons (nNM). The
vertical (red) line indicates the physical pion mass.
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omitting the B dependence for clarity. Fig. 1 shows
the above ratios for the m

⇡

⇠ 450 MeV ensemble for
each magnetic field strength, along with correlated single-
exponential fits to the time dependence and their statisti-
cal uncertainties. The energies extracted from these fits
depend on |B|, with 2 e

M

L

1

being the coe�cient of the
linear term. Fig. 2 shows the extracted energy shifts for
both the m

⇡

⇠ 450 MeV and 806 MeV ensembles. The
figure also shows the envelopes of a large range of poly-
nomial fits to their magnetic field dependence. Ref. [35]
presents the m

⇡

⇠ 806 MeV correlation functions in de-
tail, and has a complete discussion of the fitting methods
used in the analysis for both sets of pion masses.
The extracted values of L

1

are shown in Fig. 3 for both
sets of quark masses. The functional dependence of L

1

on the light-quark masses is not known. However, the
deuteron and dineutron remain relatively near threshold
over a large range of quark masses [33, 52–55], and the
magnetic moments of the nucleons are essentially inde-
pendent of the quark masses when expressed in units of
natural nuclear magnetons [40], so it is plausible that
L

1

also varies only slowly with the pion mass. Indeed,
there is only a small di↵erence in the value of L

1

at
m

⇡

⇠ 806 MeV and at m

⇡

⇠ 450 MeV. In order to
connect to the physical point, we extrapolate both lin-
early and quadratically in the pion mass by resampling
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the probability distribution functions of L
1

determined
by the field-strength dependence fits at each pion mass.
The two forms of extrapolation yield consistent values
at the physical point, with the central value and uncer-
tainties determined from the 0.17, 0.50 and 0.83 quan-
tiles of the combination of the two projected probabil-
ity distribution functions. After this extrapolation, the

value L

lqcd

1

= 0.285( +63
�60 ) nNM is found at the physical

pion mass, where the uncertainty incorporates statisti-
cal uncertainties, correlator fitting uncertainties, field-
strength dependence fitting uncertainties, and the uncer-
tainties in the mass extrapolation. This leads to a value
l

lqcd

1

= �4.48( +16
�15 ) fm. Future calculations with lighter

quark masses will reduce both the statistical and system-
atic uncertainties associated with L

1

.
The cross section for np ! d� has been precisely mea-

sured in experiments at an incident neutron speed of
v = 2, 200 m/s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding en-
ergy and 1

S

0

scattering parameters, the experimentally
determined nucleon isovector magnetic moment, and the
above extrapolated LQCD value of llqcd

1

, leads to a cross
section at v = 2, 200 m/s of

�

lqcd = 332.4( +5.4
�4.7 ) mb , (9)

which is consistent with the experimental value of �expt =
334.2(0.5) mb [1] within uncertainties (see also, Ref. [56]).
As in the phenomenological determination, the two-body
contributions are O(10%). At the quark masses where
the lattice calculations are performed, the cross-sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
m

⇡

⇠ 806 MeV, the scattering parameters, binding en-
ergy and magnetic moments have been determined previ-
ously [33, 39, 40] and we can predict the scattering cross
section using only lattice QCD inputs, with a median
value �

806 MeV ⇠ 5 mb at v = 2, 200 m/s.1

Summary: Lattice QCD calculations have been used
to determine the short-distance two-nucleon interactions
with the electromagnetic field (meson-exchange currents
in the context of nuclear potential models) that make sig-
nificant contributions to the low-energy cross-sections for
np ! d� and �

(⇤)
d ! np. This was facilitated by the pio-

nless e↵ective field theory which provides a clean separa-
tion of long-distance and short-distance e↵ects along with
a concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results
to the physical pion mass is in agreement with the ex-
perimental determinations of the np ! d� cross-section,
within the uncertainties of the calculation and of the ex-
periment. Calculations were performed at a single lattice

1 Propagation of the uncertainties in the required inputs leads to
a highly non-Gaussian distribution of �806 MeV [35].

spacing and volume, introducing systematic uncertainties
in L

1

that are expected to be small in comparison to our
other uncertainties, O(a2⇤2

QCD

, e

�m

⇡

L

, e

��0L) . 4%. A
more complete study, and a reduction of the uncertainties
of this cross-section will require additional calculations at
smaller lattice spacings and larger volumes, along with
calculations at smaller quark masses.
The present calculation demonstrates the power of lat-

tice QCD methods to address complex processes of im-
portance to nuclear physics directly from the Standard
Model. The methods that are used are equally applica-
ble to weak processes such as pp ! de

+

⌫, ⌫d ! ppe

+,
⌫d ! ⌫d, and ⌫d ! ⌫np, as well as to higher-body tran-
sitions. Background field techniques will also enable the
extraction of nuclear matrix elements of other currents
relevant for searches for physics beyond the Standard
Model. Extensions of our studies to larger systems are
currently under consideration, and calculations in back-
ground axial-vector fields necessary to address weak in-
teraction processes are under way. As this technique has
successfully recovered the short-distance contributions to
np ! d�, it also seems likely that it can be generalized
to the calculation of parity-violating observables in this
process resulting from weak interactions, or from physics
beyond the Standard Model (see Ref. [57] for a review).
Finally, the present work reinforces the utility of com-
bining lattice QCD calculations with low-energy e↵ective
field theories describing multi-nucleon systems [58].
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np ! d�, and the photo-disintegration
processes �(⇤)d ! np. In nuclear potential models, such contributions are described by phenomeno-
logical meson-exchange currents, while in the present work, they are determined directly from the
quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple
background magnetic fields are performed at two values of the quark masses, corresponding to pion
masses of m⇡ ⇠ 450 and 806 MeV, and are combined with pionless nuclear e↵ective field theory to
determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross sec-
tion of �lqcd(np ! d�) = 332.4( +5.4

�4.7 ) mb is obtained at an incident neutron speed of v = 2, 200 m/s,

consistent with the experimental value of �expt(np ! d�) = 334.2(0.5) mb.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

The radiative capture process, np ! d�, plays a crit-
ical role in big-bang nucleosynthesis (BBN) as it is the
starting point for the chain of reactions that form most
of the light nuclei in the cosmos. Studies of radia-
tive capture [1–3], and the inverse processes of deuteron
electro- and photo-disintegration, �(⇤)

d ! np [4–7], have
constrained these cross-sections and have also provided
critical insights into the interactions between nucleons
and photons. They conclusively show the importance of
non-nucleonic degrees of freedom in nuclei, which arise
from meson-exchange currents (MECs) in the context
of nuclear potential models [8, 9]. Nevertheless, in the
energy range relevant for BBN, experimental investiga-
tions are challenging [10]. For the analogous weak in-
teractions of multi-nucleon systems, considerably less is
known from experiment but these processes are equally
important. The weak two-nucleon interactions currently
contribute the largest uncertainty in calculations of the
rate for proton-proton fusion in the Sun [11–17], and in
neutrino-disintegration of the deuteron [18], which is a
critical process needed to disentangle solar neutrino os-
cillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determi-
nations from the underlying theory of strong interaction,
quantum chromodynamics (QCD), are fundamental to
future theoretical progress. Such determinations are also
of significant phenomenological importance for calibrat-
ing long-baseline neutrino experiments and for investiga-

tions of double beta decay in nuclei. In this Letter, we
take the initial steps towards meeting this challenge and
present the first lattice QCD (LQCD) calculations of the
np ! d� process. The results are in good agreement with
experiment and show that QCD calculations of the less
well-determined electroweak processes involving light nu-
clei are within reach. Similarly, the present calculations
open the way for QCD studies of light nuclear matrix ele-
ments of scalar [19] (and other) currents relevant for dark
matter direct detection experiments and other searches
for physics beyond the Standard Model.
The low-energy cross section for np ! d� is conve-

niently written as a multipole expansion in the electro-
magnetic (EM) field [20, 21],

�(np ! d�) =
e

2(�2

0

+ |p|2)3
M

4

�

3

0

|p| |X̃
M1

|2 + ... , (1)

where X̃

M1

is the M1 amplitude, �
0

is the binding mo-
mentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribu-
tion from E1 and higher-order multipoles (higher multi-
poles can be included systematically and improve the re-
liability of the description [22], but are not relevant at the
level of precision of the present work). In a pionless e↵ec-
tive field theory expansion [23–25], employing dibaryon
fields to resum e↵ective range contributions [26, 27], the
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The radiative capture process, np ! d�, plays a crit-
ical role in big-bang nucleosynthesis (BBN) as it is the
starting point for the chain of reactions that form most
of the light nuclei in the cosmos. Studies of radia-
tive capture [1–3], and the inverse processes of deuteron
electro- and photo-disintegration, �(⇤)

d ! np [4–7], have
constrained these cross-sections and have also provided
critical insights into the interactions between nucleons
and photons. They conclusively show the importance of
non-nucleonic degrees of freedom in nuclei, which arise
from meson-exchange currents (MECs) in the context
of nuclear potential models [8, 9]. Nevertheless, in the
energy range relevant for BBN, experimental investiga-
tions are challenging [10]. For the analogous weak in-
teractions of multi-nucleon systems, considerably less is
known from experiment but these processes are equally
important. The weak two-nucleon interactions currently
contribute the largest uncertainty in calculations of the
rate for proton-proton fusion in the Sun [11–17], and in
neutrino-disintegration of the deuteron [18], which is a
critical process needed to disentangle solar neutrino os-
cillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determi-
nations from the underlying theory of strong interaction,
quantum chromodynamics (QCD), are fundamental to
future theoretical progress. Such determinations are also
of significant phenomenological importance for calibrat-
ing long-baseline neutrino experiments and for investiga-

tions of double beta decay in nuclei. In this Letter, we
take the initial steps towards meeting this challenge and
present the first lattice QCD (LQCD) calculations of the
np ! d� process. The results are in good agreement with
experiment and show that QCD calculations of the less
well-determined electroweak processes involving light nu-
clei are within reach. Similarly, the present calculations
open the way for QCD studies of light nuclear matrix ele-
ments of scalar [19] (and other) currents relevant for dark
matter direct detection experiments and other searches
for physics beyond the Standard Model.
The low-energy cross section for np ! d� is conve-
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magnetic (EM) field [20, 21],

�(np ! d�) =
e

2(�2

0

+ |p|2)3
M

4

�

3

0

|p| |X̃
M1

|2 + ... , (1)

where X̃

M1

is the M1 amplitude, �
0

is the binding mo-
mentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribu-
tion from E1 and higher-order multipoles (higher multi-
poles can be included systematically and improve the re-
liability of the description [22], but are not relevant at the
level of precision of the present work). In a pionless e↵ec-
tive field theory expansion [23–25], employing dibaryon
fields to resum e↵ective range contributions [26, 27], the
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the probability distribution functions of L
1

determined
by the field-strength dependence fits at each pion mass.
The two forms of extrapolation yield consistent values
at the physical point, with the central value and uncer-
tainties determined from the 0.17, 0.50 and 0.83 quan-
tiles of the combination of the two projected probabil-
ity distribution functions. After this extrapolation, the

value L
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= 0.285( +63
�60 ) nNM is found at the physical

pion mass, where the uncertainty incorporates statisti-
cal uncertainties, correlator fitting uncertainties, field-
strength dependence fitting uncertainties, and the uncer-
tainties in the mass extrapolation. This leads to a value
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= �4.48( +16
�15 ) fm. Future calculations with lighter

quark masses will reduce both the statistical and system-
atic uncertainties associated with L
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.
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sured in experiments at an incident neutron speed of
v = 2, 200 m/s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding en-
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scattering parameters, the experimentally
determined nucleon isovector magnetic moment, and the
above extrapolated LQCD value of llqcd
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, leads to a cross
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which is consistent with the experimental value of �expt =
334.2(0.5) mb [1] within uncertainties (see also, Ref. [56]).
As in the phenomenological determination, the two-body
contributions are O(10%). At the quark masses where
the lattice calculations are performed, the cross-sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
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⇠ 806 MeV, the scattering parameters, binding en-
ergy and magnetic moments have been determined previ-
ously [33, 39, 40] and we can predict the scattering cross
section using only lattice QCD inputs, with a median
value �

806 MeV ⇠ 5 mb at v = 2, 200 m/s.1

Summary: Lattice QCD calculations have been used
to determine the short-distance two-nucleon interactions
with the electromagnetic field (meson-exchange currents
in the context of nuclear potential models) that make sig-
nificant contributions to the low-energy cross-sections for
np ! d� and �

(⇤)
d ! np. This was facilitated by the pio-

nless e↵ective field theory which provides a clean separa-
tion of long-distance and short-distance e↵ects along with
a concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results
to the physical pion mass is in agreement with the ex-
perimental determinations of the np ! d� cross-section,
within the uncertainties of the calculation and of the ex-
periment. Calculations were performed at a single lattice

1 Propagation of the uncertainties in the required inputs leads to
a highly non-Gaussian distribution of �806 MeV [35].

spacing and volume, introducing systematic uncertainties
in L

1

that are expected to be small in comparison to our
other uncertainties, O(a2⇤2

QCD

, e

�m

⇡

L

, e

��0L) . 4%. A
more complete study, and a reduction of the uncertainties
of this cross-section will require additional calculations at
smaller lattice spacings and larger volumes, along with
calculations at smaller quark masses.
The present calculation demonstrates the power of lat-

tice QCD methods to address complex processes of im-
portance to nuclear physics directly from the Standard
Model. The methods that are used are equally applica-
ble to weak processes such as pp ! de

+

⌫, ⌫d ! ppe

+,
⌫d ! ⌫d, and ⌫d ! ⌫np, as well as to higher-body tran-
sitions. Background field techniques will also enable the
extraction of nuclear matrix elements of other currents
relevant for searches for physics beyond the Standard
Model. Extensions of our studies to larger systems are
currently under consideration, and calculations in back-
ground axial-vector fields necessary to address weak in-
teraction processes are under way. As this technique has
successfully recovered the short-distance contributions to
np ! d�, it also seems likely that it can be generalized
to the calculation of parity-violating observables in this
process resulting from weak interactions, or from physics
beyond the Standard Model (see Ref. [57] for a review).
Finally, the present work reinforces the utility of com-
bining lattice QCD calculations with low-energy e↵ective
field theories describing multi-nucleon systems [58].
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Anticipated Progress
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• Lighter pion masses
•  groups already at physical point

• Higher precision
• needed at all masses

• Multi-nucleon forces

• P-shell and SD-shell nuclei

• Matrix elements

Axial-Current Matrix Elements
Mπ ~ 800 MeV

3S1 - 1S0 Mixing

Extract the correlated two-nucleon 
interaction with axial field : L1A

(aka - meson-exchange currents)Preliminary

Further matrix elements

Background field approach to other cases	

Axial coupling to NN system	

pp fusion: “Calibrate the sun” 	

Muon capture: MuSun @ PSI	

d ν → n n e+ : SNO 	

Quadrupole moments	

Axial form factors	

Scala matrix elements

External weak field strength



Nuclear physics from the ground up

Nuclei are under serious study directly from QCD	

Spectroscopy of light nuclei and exotic nuclei (strange, 
charmed, …)	

Structure: magnetic moments and polarisabilities	

Electroweak interactions: thermal capture cross-section	

Prospect of a quantitative connection to QCD  
makes this a very exciting time for nuclear physics	

Nuclear matrix elements important to  
experimental program	

Learn many interesting things about nuclear 
physics along the way



Proton–neutron mass splitting

Isospin mass splittings in QCD+QED  
 
 
 

!

!

!

!

!

Clarifies role of E&M effects and quark masses in Mn - Mp 

Figure 2:
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QCD+QED
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Figure 2: Mass splittings in channels that are stable under the strong and electromagnetic interactions. Both
these interactions are fully unquenched in our 1+1+1+1 flavor calculation. The horizontal lines are the experi-
mental values and the grey shaded regions represent the experimental error [29]. Our results are shown by red
dots with their uncertainties. The error bars are the squared sums of the statistical and systematic errors. The
results for the �M

N

, �M⌃ and �M
D

mass splittings are post-dictions, in the sense that their values are known
experimentally with higher precision than from our calculation. On the other hand, our calculations yields
�M⌅, �M⌅cc splittings and the Coleman-Glashow difference �CG which have either not been measured in
experiment or are measured with less precision than obtained here. This feature is represented by a blue shaded
region around the label.

9

[S. Borsanyi et al. [BMWc] Science 347 2015]
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NN (YN, YY) scatteriing

Scattering studied via finite-volume energy levels 
 
 

!

!

!

!

!

Clarifies role of E&M effects and quark masses in Mn - Mp 

33

Deuteron appears to be unnatural but  
not finely-tuned ?? 

Generic feature of YM with nf=3

 NN Interactions 
NPLQCD

mπ ~ 450 MeV

mπ ~ 800 MeV

(Zohreh Davoudi)Pre
limin

ary

Kostas Orginos, et al (NPLQCD)  Phys.Rev. D92 (2015) no.11, 114512 



NN (YN, YY) scatteriing

Scattering studied via finite-volume energy levels 
 
 

!

!

!

!

!

Clarifies role of E&M effects and quark masses in Mn - Mp 
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Methods and Difficulties 
Correlators

Luscher’s method(s): PACS, NPLQCD, Mainz,  

k⇤2 [l.u.]

27 irrep

k
⇤
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t
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Two-parameter ERE: 68% C.I.

Two-parameter ERE: 90% C.I.

Three-parameter ERE: 90% C.I.

Three-parameter ERE: 68% C.I.

323 ⇥ 48 : 68% C.I.

243 ⇥ 48 : 68% C.I.

483 ⇥ 64 : 68% C.I.

d = (0, 0, 0)

d = (0, 0, 1)

d = (0, 0, 2)

p
�k⇤2

Applicable out to inelastic threshold, then can be extended by including 
other channels and S-matrix, k2 < mπ  MN .

Effective Range Expansion valid below t-channel cut, k < mπ /2 

Preliminary



External currents and nuclei

Nuclear effective field theory:	

1-body currents are dominant	

2-body currents are sub-leading  
but non-negligible	

Determine one body contributions from 
single nucleon	

Determine few-body contributions from 
A=2,3,4... 	

Match EFT and many body methods to 
LQCD to make predictions for larger nuclei



Nuclear uncertainties

How well do we know nuclear matrix 
elements?	

! Stark example of problems:  
Gamow-Teller transitions in nuclei 	

Well measured for large range  
of nuclei (30<A<60) 	

Many nuclear structure calcs 
(QRPA, shell-model,…) – 
spectrum well described	

Matrix elements systematically off 
by 20–30% 	

“Correct” by “quenching” axial 
charge in nuclei ...
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FIG. 1. Comparison of the experimental matrix ele-
ments R(GT ) with the theoretical calculations based on
the “free-nucleon” Gamow-Teller operator. Each transi-
tion is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.
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FIG. 2. Comparison of the experimental values of
the sums T (GT ) with the correspondig theoretical value
based on the “free-nucleon” Gamow-Teller operator.
Each sum is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.

TABLE I. Experimental and theoretical M(GT ) matrix elements. The experimental data have been taken from [19]. Iβ + Iϵ

are the branching ratios . All other quantities explained in the text.

Process 2Jπ
n , 2T π

n Q Iβ + Iϵ log ft M(GT ) W
(MeV) (%) Exp. Th.

41Sc(β+)41Ca 7−, 1 6.496 99.963(3) 3.461(7) 2.999 4.083 6.172
42Sc∗(β+)42Ca 12+, 2 3.851 100 4.17(2) 2.497 3.389 11.127
42Ti(β+)42Sc 2+, 0 6.392 55(14) 3.17(12) 2.038 2.736 3.086
43Sc(β+)43Ca 7−, 3 2.221 77.5(7) 5.03(2) 0.677 0.764 6.172

5−, 3 1.848 22.5(7) 4.97(3) 0.726 0.878
44Sc(β+)44Ca 4+

1 , 4 2.497 98.95(4) 5.30(2) 0.392 0.741 6.901
4+
2 , 4 0.998 1.04(4) 5.15(3) 0.466 0.205

4+
3 , 4 0.353 0.010(2) 6.27(8) 0.128 0.295

44Sc∗(β+)44Ca 12+, 4 0.640 1.20(7) 5.88(3) 0.324 0.276 11.127
45Ca(β−)45Sc 7−, 3 0.258 99.9981 5.983(1) 0.226 0.079 13.802
45Ti(β+)45Sc 7−, 3 2.066 99.685(17) 4.591(2) 1.123 1.551 6.172

5−, 3 1.342 0.154(12) 6.24(4) 0.168 0.280
7−, 3 0.654 0.090(10) 5.81(5) 0.276 0.397
9−, 3 0.400 0.054(5) 5.60(4) 0.351 0.712

45V(β+)45Ti 7−, 1 7.133 95.7(15) 3.64(2) 1.801 2.208 6.172
5−, 1 7.093 4.3(15) 5.0(2) 0.701 0.428

46Sc(β−)46Ti 8+, 2 0.357 99.9964(7) 6.200(3) 0.187 0.277 13.093
47Ca(β−)47Sc 7−, 5 1.992 19(10) 8.5(3) 0.012 0.262 16.331

5−, 5 0.695 81(10) 6.04(6) 0.212 0.235
47Sc(β−)47Ti 5−, 3 0.600 31.6(6) 6.10(1) 0.198 0.235 13.802

7−, 3 0.441 68.4(6) 5.28(1) 0.508 0.611

3

[Martinez-Pinedo et al., Phys. Rev. C53, 2602 (1996)]
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The effective gA in the pf-shell
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We have calculated the Gamow-Teller matrix elements of
64 decays of nuclei in the mass range A = 41–50. In all the
cases the valence space of the full pf -shell is used. Agreement
with the experimental results demands the introduction of an
average quenching factor, q = 0.744 ± 0.015, slightly smaller
but statistically compatible with the sd-shell value, thus indi-
cating that the present number is close to the limit for large
A.

PACS number(s): 21.10.Pc, 25.40.Kv, 27.40.+z

The observed Gamow Teller strength appears to be
systematically smaller than what is theoretically ex-
pected on the basis of the model independent “3(N−Z)”
sum rule. Much work has been devoted to the subject
in the last fifteen years [1–4]. The heart of the problem
can be summed up by defining the reduced transition
probability as

B(GT ) =

(

gA

gV

)2

⟨στ ⟩2, ⟨στ ⟩ =
⟨f ||

∑

k σ
k
t
k
±||i⟩√

2Ji + 1
,

(1)

and asking: Is the observed quenching due to a renormal-
ization of the gA coupling constant —originating in non
nucleonic effects— or is it the στ operator that should
be renormalized because of nuclear correlations?

The analysis of some pf -shell nuclei for which very
precise data are available and full 0h̄ω calculations are
possible, strongly suggests that most of the theoretically
expected strength has been observed [5,6] . The quench-
ing factor necessary to bring into agreement the calcu-
lated and measured values is directly related to the am-
plitude of the 0h̄ω model space components in the exact
wave functions. This normalization factor can also be
obtained from (d, p) or (e, e′p) reactions and reflects the

∗gabriel@nuc2.ft.uam.es
†poves@nucphys1.ft.uam.es
‡caurier@crnhp4.in2p3.fr
§zuker@crnhp4.in2p3.fr

reduction in the discontinuity at the Fermi surface in a
normal system. As such, it is a fundamental quantity,
whose evolution with mass number is of interest.

In principle there are two ways of extracting it from
Gamow Teller processes. One is to equate it to the frac-
tion of strength seen in the resonance region in (p, n)
reactions. The alternative is to calculate lifetimes for in-
dividual β decays and show that they correspond to the
experimental values within a constant factor. The latter
procedure is more precise, but demands high quality shell
model calculations that until recently were available only
up to A = 40 [7–9].

Our aim is to extend these analyses to the lower part of
the pf shell. Full 0h̄ω diagonalizations are done using the
antoine code [10] with the effective interaction KB3, a
minimally monopole modified version [11] of the original
Kuo Brown matrix elements [12]. We refer to [13] for
details of the shell model work.

Following ref. [14] we define quenching as follows: for
beta decays populating well-defined isolated states in the
daughter nucleus, the square root of the ratio of the ex-
perimental measured rate to the calculated rate in a full
0h̄ω calculation is called the quenching factor. An av-
erage quenching factor, q, implies an average over many
transitions, and may be incorporated into an effective
axial vector coupling constant:

q =
gA,eff

gA
, (2)

where gA is the free-nucleon value of −1.2599(25) [14].
Following ref. [7] we define

M(GT ) = [(2Ji + 1)B(GT )]1/2 , (3)

so as to have quantities independent of the direction of
the transition. Note here that our reduced matrix ele-
ments follow Racah’s convention [15]. In table I we list
the M(GT ) values and compare them with the exper-
imental results. The table contain all the transitions
known experimentally. We also include the quantum
numbers of the final states, the Q-values, the branch-
ing ratios and the experimental log ft values from which
the B(GT ) values were obtained using

1

T (GT ) ⇠
sX

f

h� · ⌧ ii!f

Points correspond to different nuclei



Nuclear sigma terms

One possible DM interaction is through scalar exchange 	

!

Direct detection depends on nuclear matrix element 
 

Accessible via Feynman-Hellman theorem 	

At hadronic/nuclear level 
 

Contributions:

L =
GF

2

X

q

a(q)
S (��)(q q)

Lagrange density in Eq. (2) matches onto

L ! GF ��
✓

1

4
h0|qq|0i Tr

h
aS⌃

† + a†S⌃
i
+

1

4
hN |qq|NiN †NTr

h
aS⌃

† + a†S⌃
i

� 1

4
hN |q⌧ 3q|Ni

⇣
N †NTr

h
aS⌃

† + a†S⌃
i
� 4N †aS,⇠N

⌘
+ ...

◆
(3)

at the chiral symmetry breaking scale ⇤�, which describes the single-hadron matrix elements
and the associated interactions at LO in the chiral expansion. ⌃ is the exponentiated pion
field, and N is the nucleon field,

⌃ = exp

 
2i

f⇡
M

!

, M =

 
⇡0/

p
2 ⇡+

⇡� �⇡0/
p
2

!

, N =

 
p
n

!

, (4)

f⇡ = 132 MeV is the pion decay constant, aS,⇠ =
1
2

⇣
⇠†aS⇠† + ⇠a†S⇠

⌘
with ⇠ =

p
⌃, and the

ellipsis denotes higher-order interactions including those involving more than one nucleon.
Expanding Eq. (3) in the number of pion fields (neglecting the shift in the WIMP mass
induced by the chiral condensate), the LO contributions to the interactions are

L ! GF ��

 

� (a(u)S + a(d)S )

f 2
⇡

h0|qq|0i
✓
1

2
(⇡0)2 + ⇡+⇡�

◆
+

1

2
(a(u)S + a(d)S )hN |qq|NiN †N

+
1

2
(a(u)S � a(d)S )hN |q⌧ 3q|NiN †⌧ 3N + ...

!

. (5)

Matching onto the multi-nucleon interactions is complicated by the fact that contributions
from pion-exchange interactions and from local four-nucleon operators are of the same order
in the chiral expansion, and the coe�cients of the latter are not directly related to multi-
nucleon matrix elements at any order in the chiral expansion. For instance, the four-nucleon
operators involving one insertion of the light-quark mass matrix are of the form [13–15]

LN4,mq = DS,1

⇣
N †N

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DS,2N

†NN †mq,⇠+N

+ DT,1

⇣
N †�aN

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DT,2N

†�aNN †�amq,⇠+N (6)

in the low-energy EFT, where mq,⇠+ = 1
2

⇣
⇠†mq⇠† + ⇠m†

q⇠
⌘
, and �a are the Pauli matrices.

Hence WIMP–two-nucleon interactions are of the form

LN4,� = �GF��
✓
DS,1

⇣
N †N

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DS,2N

†NN †aS,⇠N

+DT,1

⇣
N †�aN

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DT,2N

†�aNN †�aaS,⇠N
◆

. (7)

The importance of the various contributions to the scalar-isoscalar matrix elements can be
estimated using power counting arguments. The second and third terms in Eq. (5) provide
the leading (order Q0, where Q denotes the small ratio of scales in the e↵ective theory) scalar
interactions between the WIMP and the nucleon that generate the impulse approximation
for WIMP-nucleus interactions (see Fig. 1 (left)). In a nucleus, the first term in Eq. (5) gives
rise to a MEC between two nucleons, as shown in Fig. 1 (middle), that naively contributes
at order 1/Q2 in the chiral expansion due to the non-derivative interaction of the pions,

4

which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
1 + O

⇣
m2

⇡

⌘ i m⇡

2

d

dm⇡
E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
⇡

h
1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation

5
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from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
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Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu + dd |Z,N(gs)i = m
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Nucleon sigma term

Single nucleon contribution  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Figure 4. Comparison of some of the lattice results for the sigma terms over the last
two decades. Only results which include some attempt at chiral extrapolation (using
any formalism), or were simulated at the physical point directly, are shown. Red, blue
and purple colours denote direct, Feynman-Hellmann and hybrid approaches, while the
green points are from early Nf = 0 calculations. Squares, circles and upward triangles
denote Nf = 2, 2+1 and 2+1+1 studies. Results are from Refs. [143] (RQCD), [144]
(ETM), [138, 145] (BMW), [139, 146] (�QCD), [147] (Ren et al.), [148] (ETM), [149]
(Lutz et al.), [42] (Shanahan et al.), [150–152] (JLQCD), [153] (Junnarkar et al.), [154]
(MILC), [155] (Semke et al.), [156] (Engelhardt), [142,157] (QCDSF), [158] (Young &
Thomas), [159] (SESAM), [160] (Dong et al.), [161] (Fukugita et al.), [162] (Alvarez-
Ruso et al.), [163] (Procura et al), [164] (Leinweber et al.).

4.2. The proton-neutron mass di↵erence

Charge symmetry violation (CSV) in the nucleon mass is small—the neutron-proton

mass di↵erence is one part in a thousand. The e↵ects of this small CSV, however,

are of tremendous significance; it is precisely this which ensures that the hydrogen

atom is stable against weak decay and that neutrons can decay into protons (plus

electrons and antineutrinos) in radioactive beta decay. While the total proton-neutron

mass di↵erence is known extremely precisely from experiments [97], its decomposition

into strong and electromagnetic contributions is less well known. In recent years

there has been considerable e↵ort invested in lattice-based determinations of both the

QCD contribution to the baryon mass splittings [165–170] and the electromagnetic

contribution [171–175]. However, 1 + 1 + 1–flavour simulations—at this stage the only

way to directly probe the full flavor-dependence of QCD observables—are not yet widely

available (the first set of 1 + 1 + 1 + 1–flavour ensembles has recently appeared [176]).

Such studies are of particular interest in the light of recent results which suggest that

the accepted value for the electromagnetic contribution to the neutron-proton mass

di↵erence calculated using the Cottingham formula may be too small because of an

omission in the traditional analysis [177,178].

In this review focused on the ChEFT–lattice-QCD connection we concentrate not

which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
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⇣
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E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
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2
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to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation

5

[P Shanahan 2016]

us analyze Σd in the formalism from [291, 292]

Σd = F2π
{
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where ω =
√
q2 + M2

π , s = m2N + M
2
π + 2mNω, and

D+(ω) =
[
A+ + ωB+

]
s=s(ω),t=0 , E+(ω) =

[
∂

∂t
(
A+(s, t) + ωB+(s, t)

)
]

s=s(ω),t=0
. (9.22)

Accordingly, there is a direct connection between J+ and cross-section data,15 whereas J̃+ requires a PWA. Using
J+ = (1.459± 0.005)M−1π from [344], a+0+ = (−0.9± 1.4)× 10

−3M−1π from (6.29), a+1+ = (131.2± 1.7)× 10
−3M−3π from

Table 6, and g2/(4π) = 13.7± 0.2 as before, the only missing ingredient is J̃+. Adopting a value of (−70.5± 1.5)MeV
for its contribution to Σd (to cover the two evaluations given in [293]), we find Σd = (59.2 ± 5.2)MeV, in excellent
agreement with the RS result, but considerably less precise. In the end, the difference originates almost exclusively
from a+1+ = 133 × 10

−3M−3π as used in [293]. Keeping the rest of the input fixed but increasing a+1+ accordingly,
the central value indeed increases to Σd = 64MeV. This comparison shows that the decomposition (9.21) is much
more sensitive to a+1+ than previously appreciated, already the rather precise prediction from the RS solution amounts
to an uncertainty of 5MeV in the σ-term. To obtain a result comparable to (9.20), a+1+ would need to be known at
sub-percent accuracy. The elimination of the need for independent input for a+1+ thus constitutes the main advantage
of the RS approach.

In conclusion, the final result [114]
σπN = (59.1 ± 3.5)MeV (9.23)

does amount to a significant increase compared to the “canonical value” of σπN ∼ 45MeV, although already 4.2MeV
are due to new corrections to the LET (and thereof 3.0MeV from isospin breaking). The remaining increase of nearly
10MeV is dictated by experiment: the new scattering lengths from pionic atoms determine the position of the σ-term
on the curve approximately described by (9.19).

The σ-term has also been extracted from πN scattering phase shifts using ChPT at one loop [20, 24, 308], partly
finding central values that are well compatible with (9.23). In such analyses, the LECs of the chiral representation
are fixed from fits to various PWAs, and chiral LETs used subsequently to determine the σ-term. All the (dispersive)
relations that constitute the Cheng–Dashen LET used in the extraction from the RS solution are fulfilled by the
chiral representation, too, albeit only in a perturbative way. In particular, one implicitly needs to extrapolate from
the physical s-channel to the subthreshold region; we will comment on this relation in Sect. 10.2. Based on the
analysis performed up to here, we point out that the chiral one-loop representation is likely problematic for a precision
determination of the σ-term. It is well-known that it does not provide sufficient curvature to the scalar form factor of
the nucleon [93]; similarly, the quantity ∆D is severely underestimated [23]. Therefore, the one-loop representation of
the πN scattering amplitude does not describe the subthreshold region very accurately: the extraction of the σ-term is
enabled only by the large cancellation in ∆D − ∆σ as described above. Furthermore, we have explained in Sect. 7.1
how t-channel D-waves including the f2(1270) resonance are an essential ingredient to a consistent solution of the RS

15The analogous integral J− of the cross-section difference becomes relevant for the evaluation of the GMO sum rule [257, 343].
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(two-flavor) nuclear �-term can be written as

�Z,N = A�N + �BZ,N = A�N � m⇡

2

d

dm⇡
BZ,N , (11)

where

�N = mhN | uu + dd |Ni = m
d

dm
MN =

m⇡

2

d

dm⇡
MN (12)

is the nucleon �-term and |Ni is the single-nucleon state. The first term in Eq. (11) is the
noninteracting single-nucleon contribution to the nuclear �-term, while the second term cor-
responds to the corrections due to interactions between the nucleons, including the possibly
enhanced contributions from MECs. It is useful to define the ratio

��Z,N = � 1

A�N

m⇡

2

d

dm⇡
BZ,N (13)

to quantify the deviations from the impulse approximation. In addition to representing de-
viations of nuclear �-terms from the impulse approximation, this quantity also describes the
deviation of the scalar-isoscalar WIMP-nucleus scattering matrix element from the impulse
approximation at zero momentum transfer,

��Z,N =
hZ,N(gs)| uu + dd|Z,N(gs)i

A hN | uu + dd|Ni � 1 . (14)

III. LIGHT NUCLEI FROM LATTICE QCD AND THEIR �-TERMS

Lattice QCD has evolved to the stage where the binding energies of the lightest nuclei and
hypernuclei have been determined at a small number of relatively heavy pion masses in the
limit of isospin symmetry. Further, the mass of the nucleon has been explored extensively
over a large range of light-quark masses, with calculations now being performed at the phys-
ical value of the pion mass. These sets of calculations, along with the experimental values
of the masses of the light nuclei, are su�cient to arrive at a first QCD determination of the
nuclear �-terms for these nuclei at a small number of pion masses. This work provides an es-
timate of the modifications to the impulse approximation for scalar-isoscalar WIMP-nucleus
interactions in light nuclei2. In particular, these results can be used to explore the conjec-
tured enhancement of MEC contributions to these interactions, and to investigate the size of
the uncertainties introduced by the use of the impulse approximation in phenomenological
analyses.

The binding energies of the deuteron, 3He and 4He at pion masses of m⇡ ⇠ 390, 510
and 806 MeV calculated with lattice QCD [36–38, 54, 55] are presented in Table I, along
with their values at the physical point, and are shown in Fig. 2. The binding energies
per nucleon are shown in Fig. 3. The lattice QCD calculations were performed with clover-
improved discretizations of the quark fields. The m⇡ ⇠ 806 MeV calculations were performed

2 The EFT description of the quark-mass dependence of the nuclear forces has been developed in Refs. [45–
48]. For estimates of nuclear � terms, see Refs. [49–53].
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which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)
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=
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where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
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⇣
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⇡
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, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
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to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
between m2

⇡ and m is found to hold to better than 10% over a large range of pion masses,
even for the heavy pion masses that we consider [44, 45]. We use this linear relationship

in constructing nucleon and nuclear � terms, �Z,N = m⇡
2

d
dm⇡

E(gs)
Z,N , and assign a conservative

10% uncertainty in order to account for the nonlinearity in the GMOR relation (note that
this uncertainty will later cancel when we take the ratio of �-terms below).

Writing the mass of the nucleus as E(gs)
Z,N = AMN � BZ,N , where A = Z + N , MN is

the isospin-averaged nucleon mass, and BZ,N is the total binding energy of the nucleus, the
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III. LIGHT NUCLEI FROM LATTICE QCD AND THEIR �-TERMS

Lattice QCD has evolved to the stage where the binding energies of the lightest nuclei and
hypernuclei have been determined at a small number of relatively heavy pion masses in the
limit of isospin symmetry. Further, the mass of the nucleon has been explored extensively
over a large range of light-quark masses, with calculations now being performed at the phys-
ical value of the pion mass. These sets of calculations, along with the experimental values
of the masses of the light nuclei, are su�cient to arrive at a first QCD determination of the
nuclear �-terms for these nuclei at a small number of pion masses. This work provides an es-
timate of the modifications to the impulse approximation for scalar-isoscalar WIMP-nucleus
interactions in light nuclei2. In particular, these results can be used to explore the conjec-
tured enhancement of MEC contributions to these interactions, and to investigate the size of
the uncertainties introduced by the use of the impulse approximation in phenomenological
analyses.

The binding energies of the deuteron, 3He and 4He at pion masses of m⇡ ⇠ 390, 510
and 806 MeV calculated with lattice QCD [36–38, 54, 55] are presented in Table I, along
with their values at the physical point, and are shown in Fig. 2. The binding energies
per nucleon are shown in Fig. 3. The lattice QCD calculations were performed with clover-
improved discretizations of the quark fields. The m⇡ ⇠ 806 MeV calculations were performed

2 The EFT description of the quark-mass dependence of the nuclear forces has been developed in Refs. [45–
48]. For estimates of nuclear � terms, see Refs. [49–53].
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1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
between m2

⇡ and m is found to hold to better than 10% over a large range of pion masses,
even for the heavy pion masses that we consider [44, 45]. We use this linear relationship
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