

International Nuclear Physics Conference

Adelaide Convention Centre, Australia

11-16 September 2016

SoLID @ Jefferson Laboratory

Solenoidal Large Intensity Device

Acknowledgement:

J. P. Chen, H. Gao, K. Kumar, Z.-E. Meziani, J. Qiu, S. Riordan, P. Souder

Abhay Deshpande

SoLID Science Program

- Proton SPIN: Where is the missing spin in the nucleon? Role of quark transverse momentum and their orbital angular momentum?
- Proton's MASS through threshold production of J/Ψ : Can we understand fully the gluon's role origin of the mass?
- Can we discover evidence for physics beyond the Standard Model with high intensity electron beam of the CEBAF?
- Not covered today: Large acceptance detector with capability for high luminosity also makes possible many other investigations: such as Polarized/EMC effect, PVDIS D/DVCS, Polarized PDF, Charge Symmetry Violation p/n....

SoLID In Hall-A

Solenoidcal Large Intensity Device

SoLID experiment at JLab 4

Solenoidcal Large Intensity Device

- Large acceptance
 - Full azimuthal coverage
- High luminosity (10³⁷⁻³⁹ cm⁻²sec⁻¹)
- Latest detector technology in detector & data acquisition
- World wide interest in the science at SoLID evidenced by:
 - 250+ collaborators, 50 institutions and 13 countries
 - Significant international contributions and commitment
 - Strong theoretical interest and support
- 500+ days of science already been reviwed and approved by the JLab Physics Advisory Committee (PAC)

Evidence of transverse momenta of quarks in polarized proton:

Transvers Single Spin Asymmetry in $\pi^{+/-}$ production \rightarrow p+p scattering

Unified view of the Nucleon Structure

Unified view of the Nucleon Structure

Unified view of the Nucleon Structure

□ (2+1)D imaging Quarks (SOLID@JLAB12), Gluons (EIC)

TMDs – confined motion in a nucleon (semi-inclusive DIS)

♦ GPDs – Spatial imaging of quarks and gluons (exclusive DIS & diffraction)

Possible Origins of TMDs

Nucleon Spin
Quark Spin

(Leading twist Transverse Momentum Diistributions)

		Quark polarization		
		Un-Polarized	Longitudinally Polarized	Transversely Polarized
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = \bigcirc - \bigcirc$ Boer-Mulder
	L		$g_1 = -$ Helicity	$h_{1L}^{\perp} = \checkmark - \checkmark$
	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}}^{\bullet} - \underbrace{\bullet}_{\text{V}}^{\bullet}$	$g_{1T} \perp = -$	$h_{1T} = \underbrace{\downarrow}_{-} - \underbrace{\uparrow}_{Transversity}$ $h_{1T}^{\perp} = \underbrace{\nearrow}_{-} - \underbrace{\checkmark}_{-}$ Pretzelosity

 $ec P_h$

SIDIS \rightarrow Ideal for measuring Transverse Momentum Distribution (TMDs)

□ Naturally, two scales:

- high Q localized probe
 To "see" quarks and gluons
- ♦ Low p_T sensitive to confining scale
 To "see" their confined motion
- ♦ Theory QCD TMD factorization

Naturally, two planes:

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$
$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$
$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

Experimental Issue: High Luminosity, Large Acceptance & particle ID

ЪУ

O

Current Status of TMD Extraction

Theoretical extraction based on limited data sets in e-p/n, e-e, and p-p measurements

(Selected examples....) Impact Plots: Grey Band is Current 95% CL vs with SoliD

(Selected examples....) Impact Plots: Grey Band is Current 95% CL vs with SoliD

(Selected examples....) Impact Plots: Grey Band is Current 95% CL vs with SoliD

Transversity Distribution for u quarks,:

(Selected examples....) Impact Plots: Grey Band is Current 95% CL vs with SoliD

Sivers Distribution for u quarks,:

Understanding Glue interactions in nonperturbative QCD

Understanding Glue interactions in nonperturbative QCD

$$\begin{split} H_{QCD} &= H_q + H_m + H_g + H_a \\ H_q &= Quark \ Energy = \int d^3 x \psi^* (-iD \cdot \alpha) \psi \\ H_m &= Quark \ Mass = \int d^3 x \overline{\psi} m \psi \\ H_g &= Gluon \ Energy = \int d^3 x \frac{1}{2} (E^2 + B^2) \\ H_a &= Trace \ Anomaly = \int d^3 x \frac{9\alpha}{16\pi} (E^2 - B^2) \end{split}$$

X. Ji PRL 74 1071 (1995)

Understanding Glue interactions in nonperturbative QCD

$$\begin{split} H_{QCD} &= H_q + H_m + H_g + H_a \\ H_q &= Quark \ Energy = \int d^3 x \psi^* (-iD \cdot \alpha) \psi \\ H_m &= Quark \ Mass = \int d^3 x \overline{\psi} m \psi \\ H_g &= Gluon \ Energy = \int d^3 x \frac{1}{2} (E^2 + B^2) \\ H_a &= Trace \ Anomaly = \int d^3 x \frac{9\alpha}{16\pi} (E^2 - B^2) \end{split}$$

There are models that **relate the trace anomaly** to the <u>J/Ψ production near</u> <u>threshold</u> (D. Kharzeev, EPJ C9 459 (1999), Int. Sch. Phys. Fermi 130, 105 (1996))

Past: Lack of statistics in the accessible phase space (near threshold). The 12GeV CEBAF provides two new possibilities:

- Electro-production of J/Ψ in SOLID
- Photoproduction of J/Ψ from Hall-D Gluex experiment

Lack of knowledge of threshold behavior:

Models-I: Hard scattering mechanism (Brodsky, Chudakov, Hoyer, Laget 2001)

Models -II: Partonic soft mechanism (Frankfurt and Strikman 2002) 2-gluon Form Factor

 $F.F. \propto (1 - t/1.0 \text{ GeV}^2)^{-4}$

Threshold J/ Ψ production @ SoLID

Real part → total cross section Imaginary part @ low energies → conformal (trace) anomaly

SoLID's Projections: Precise σ and d σ /dt

SoLID 11 GeV 3 μ A e- on LH2 50 days \rightarrow 1.2 x 10 ³⁷ cm⁻²sec⁻¹ Ample statistical sample in the region most crucial to this study

Potentially very important contribution to the knowledge of the conformal anomaly can be measured directly with SoLID.

Parity violating Deep Inelastic Scattering

Sensitive to different effective charge couplings

$$A_{\rm PV} \sim \frac{\left| \begin{array}{c} \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \right|^{\gamma^*} \\ & \begin{array}{c} & \end{array} \end{array}^{\gamma^*} \\ & \begin{array}{c} \end{array} \right|^2 \end{array} \sim 100 - 1000 \ {\rm ppm}$$

$$\approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right], y = 1 - \frac{E'}{E}$$

$$a_1(x) = 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})}$$

New Effective Weak Couplings

$$C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W = -0.19 \quad C_{2u} = -\frac{1}{2} + 2\sin^2\theta_W = -0.03 C_{1d} = \frac{1}{2} - \frac{2}{3}\sin^2\theta_W = 0.34 \quad C_{2d} = \frac{1}{2} - 2\sin^2\theta_W = 0.03$$

SoLID proposed Setup for PVDIS:

SoLID Provides Large acceptance 2 $<math>2 < Q^2 < 8 \text{ GeV}^2$ $0.2 < X_{Bj} < 1$ Acceptance 40% geometric $Luminosity: 5 \times 10^{38} \text{ sec}^{-1} \text{ cm}^{-2}$

Parity violation measurements need

- Lots of statistics i.e. good to have high rate
- Broad kinematic range: largest possible acceptance
- A beam and detector that can accept the high rate with good systematic controls

SoLID rate and kinematic acceptance

120 Days of LD_2 target (60 at 11 GeV and 60 at 6.6 GeV) 90 days with LH_2 11 GeV Sub 1% precision (modulo polarimetry advances)

Precise determination of weak couplings Quark PDFs q(x) cancel at large x

$$a_1^D(x) \approx 2 \frac{C_{1u} e_u[u(x) + d(x)] + C_{1d} e_d[u(x) + d(x)]}{e_u^2[u(x) + d(x)] + e_d^2[u(x) + d(x)]}$$

PVDIS Collaboration (w/ 6 GeV) Nature, 506, 67-70 (2014)

Precise determination of weak couplings Quark PDFs q(x) cancel at large x

$$a_1^D(x) \approx 2 \frac{C_{1u} e_u[u(x) + d(x)] + C_{1d} e_d[u(x) + d(x)]}{e_u^2[u(x) + d(x)] + e_d^2[u(x) + d(x)]}$$

PVDIS Collaboration (w/ 6 GeV) Nature, 506, 67-70 (2014)

SoLID Projection

Precise determination of weak couplings Quark PDFs q(x) cancel at large x

Precision measurement of $Sin^2\Theta_W$

Low Q^2 Weak Mixing Angle Measurements and Rare Higgs Decays

Hooman Davoudiasl,¹ Hye-Sung Lee,² and William J. Marciano¹

¹Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA ²CERN, Theory Division, CH-1211 Geneva 23, Switzerland

FIG. 3. Effective weak mixing angle running as a function of Q^2 shift (the blue band) due to an intermediate mass Z_d for (a) $m_{Z_d} = 15 \text{ GeV}$ and (b) $m_{Z_d} = 25 \text{ GeV}$ for 1 sigma fit to $\varepsilon \delta'$ in Eq. (12). The lightly shaded area in each band corresponds to choice of parameters that is in some tension with precision constraints (see text for more details).

3

SoLID Apparatus with 12 GeV CEBAF an ideal detector for physics with high statistics, and large acceptance, with azimuthal symmetry, and excellent particle ID:

- ➢ Precision studies of transeverse momentum distributions of quarks, threshold production of J/Y → non-perturbative gluon dynamics, precision parity violating DIS measurements → access of physics beyond the SM complementary to high energy colliders
- Many other studies not covered today: Charge Symmetry Violation, D/DVCS, SIDIS possible, but not covered today

Status:

- Successful Director's review in February 2015
- Pre-R&D requests being prepared now.
- Expected to be considered for CD0 (2017/18)
- > FY2020 CD3 (Construction)

J. Qiu

Mass vs. Spin

□ Mass – intrinsic to a particle:

= Energy of the particle when it is at the rest

QCD energy-momentum tensor in terms of quarks and gluons

$$T^{\mu\nu} = \frac{1}{2} \,\overline{\psi} i \vec{D}^{(\mu} \gamma^{\nu)} \psi \, + \, \frac{1}{4} \, g^{\mu\nu} F^2 \, - \, F^{\mu\alpha} F^{\nu}{}_{\alpha}$$

♦ Proton mass:

$$m = \frac{\langle p | \int d^3 x \, T^{00} | p \rangle}{\langle p | p \rangle} \sim \text{GeV}$$
 X. Ji, PRL (1995)

□ Spin – intrinsic to a particle:

= Angular momentum of the particle when it is at the rest

QCD angular momentum density in terms of energy-momentum tensor

$$M^{\alpha\mu\nu} = T^{\alpha\nu}x^{\mu} - T^{\alpha\mu}x^{\nu} \qquad \qquad J^{i} = \frac{1}{2}\epsilon^{ijk}\int d^{3}x M^{0jk}$$

♦ Proton spin:

$$S(\mu) = \sum_{z} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2}$$

Access Trace Anomaly Experimentally

$$M_q = \frac{3}{4} (a - b) M$$
$$M_m = bM$$
$$M_g = \frac{3}{4} (1 - a) M$$
$$M_a = \frac{1}{4} (1 - b) M$$

quark momentum fraction

$$a(\mu^2) = \sum_{q} \int_0^1 dx [f^q(x) + f^{\bar{q}}(x)]$$

scalar charge

$$b(\mu^2) = \langle P | m_u \bar{u}u + m_d \bar{d}d + m_s \bar{s}s | P \rangle / M$$

$$\frac{d\sigma_{J/\psi N \to J/\psi N}}{dt} = \frac{1}{64\pi} \frac{1}{m_{J/\psi}^2 (\lambda^2 - m_N^2)} F_{J/\psi N}^2 \quad J/\psi \text{-N scattering}$$

$$F_{J/\psi N} = r_0^3 d_2 \frac{2\pi^2}{27} (2M^2 - bM)$$

$$J/\psi \text{ production on}$$

$$\frac{d\sigma_{\gamma N \to J/\psi N}}{dt} = \frac{N_3 \Gamma(J/\psi \to e^+e^-)}{\alpha m_{J/\psi}} \left(\frac{k_{J/\psi N}}{k_{\gamma N}}\right)^2 \frac{d\sigma_{J/\psi N \to J/\psi N}}{dt}$$

D. Kharzeev et al Eur.Phys.J. C9 459 (1999), D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130, 105 (1996)

CEBAF Upgrade

"With the imminent completion of the CEBAF 12-GeV Upgrade, its forefront program of using electrons to unfold the quark and gluon structure of hadrons and nuclei and to probe the Standard Model must be realized"

Project Scope (~98% complete):

- Doubling the accelerator beam energy DONE
- New experimental Hall D and beam line DONE
- Civil construction including utilities DONE
- Upgrades to Experimental Halls B & C ~96%
 - Halls B & C Detectors DONE