Direct (α ,p) Reaction Measurements with HELIOS and the study of ²⁰Ne(α ,p)²³Na

Jianping Lai, Daniel Santiago-Gonzalez Catherine M. Deibel Louisiana State University

(*α*,*p*) Reactions in Explosive Nucleosynthesis - XRBs

- Type I X-ray bursts (XRBs):
 - thermonuclear explosions on neutron star surface in binary system
 - $-T_{peak} = 1 2 GK$
 - time scale 10 100 s
 - recurrent events (hours to days)
- Nucleosynthesis:
 - triple- α process
 - CNO breakout ¹⁸Ne(α ,p)²¹Na
 - (α, p) process
 - rapid proton capture (rp) process
 - synthesis up to A~100

H. Grawe et al., "Rep. Prog. Phys." 70 1525 (2007).

(*α*,*p*) Reactions in Explosive Nucleosynthesis - XRBs

- Sensitivity studies of XRB nucleosynthesis:
 - vary reactions individually
 - show only a handful of reactions significantly effect bursts
- Effects of (α, p) reactions in XRBs:
 - shape of light curve
 - energy output
 - elemental abundances
 - double-peaked bursts(?)

Cyburt et al., 2016 (submitted)

(*α*,*p*) Reactions in Explosive Nucleosynthesis - SNela

- Type la Supernovae:
 - thermonuclear explosion of white dwarf star in binary system
 - progenitor uncertain
 - disruptive explosion; no remnant
 - $T_{peak} \sim 8 \text{ GK}$
- Nucleosynthesis in SNela:
 - C+C, C+O, O+O fusion
 - α -chain reactions
 - production of >50% Fe content of Galaxy

- ¹²C + ¹²C
- ${}^{20}\text{Ne}(\alpha, p){}^{23}\text{Na}$
- ${}^{20}\text{Ne}(\alpha, \gamma){}^{24}\text{Mg}$
- ${}^{30}\text{Si}(p,\gamma){}^{31}\text{P}$

- Variation of reaction rates by factor of 10 up and down
- Two independent studies show high sensitivity to:

Bravo et al., PRC 85, 055805 (2012)

Type Ia Supernovae Sensitivity Studies

- Variation of reaction rates by factor of 10 up and down
- Two independent studies show high sensitivity to:
 - ${}^{12}C(\alpha, \gamma){}^{16}O$
 - ${}^{12}C + {}^{12}C$
 - ${}^{20}\text{Ne}(\alpha, p)^{23}\text{Na}$
 - ${}^{20}\text{Ne}(\alpha,\gamma){}^{24}\text{Mg}$
 - ${}^{30}\text{Si}(p,\gamma){}^{31}\text{P}$

Reaction	Nuclide	W7 model		DDT model	
		×10	×0.1	×10	×0.1
20 Ne(α , p) 23 Na	¹⁸ O	0.44	2.4		
	²³ Na	0.47	2.2	0.48	
	²⁶ Al		2.1		
	^{28}Mg			5.4	
	³¹ Si			3.0	

A. Parikh et al., A&A 557, 11 (2013)

Type Ia Supernovae Sensitivity Studies

- Variation of reaction rates by factor of 10 up and down
- Two independent studies show high sensitivity to:
 - ${}^{12}C(\alpha,\gamma)^{16}O \\ {}^{12}C + {}^{12}C \\ {}^{20}Ne(\alpha,p)^{23}Na \\ {}^{20}Ne(\alpha,\gamma)^{24}Mg \\ {}^{30}Si(p,\gamma)^{31}P$

Reaction	Nuclide	W7 model		DDT model	
		×10	×0.1	×10	×0.1
20 Ne(α , p) 23 Na	¹⁸ O	0.44	2.4		
	²³ Na	0.47	2.2	0.48	
	²⁶ Al		2.1		
	^{28}Mg			5.4	
	³¹ Si			3.0	

A. Parikh et al., A&A 557, 11 (2013)

Direct (α ,p) measurements with HELIOS at Argonne National Laboratory ATLAS Fragment Mass Analyzer Target Gammasphere Area IV HELIOS 03 83 Gretina/Gammasphere and standardardardards Beamline Hot Lab Split-Pole CARIBU AIRIS Spectrometer ECR II Atomic Ion Source Physics **Target Area III** ATLAS Linac **Booster Service** ECR I Large Scattering lon Facility Source **Trap Area PII Linac** RFO managerenes (external areas a 103030303030368030803030 **Booster Linac** 00000 000000 Same and the second 15115115 **General Purpose** and the second s Beam Line 50 Accelerator **Control Room** Approximate Scale (in feet) RP041401

C. M. Deibel INPC September 13, 2016

- HELIcal Orbit Spectrometer (HELIOS)
 - repurposed MRI magnet
 - magnetic field aligned with beam axis
 - commissioned 2008
- Ideal for studying reactions with radioactive ion beams
 - unique particle identification from time-of-flight
 - high geometrical efficiency
 - improve resolution (avoid kinematic compression)

Particle	р	³ He	d,⁴He	t
TOF(ns)	21.9	32.8	43.7	65.6

Beam

Prototype

Si array

Target fan

Recoil

Detector

- Direct (α, p) measurement needs:
 - ⁴He gas target
 - cryogenically cooled
 - commissioned with ¹⁴C(*d*,*p*)¹⁵C, ¹⁴C(³He,*d*)¹⁵N Spring 2013

- Direct (α, p) measurement needs:
 ⁴He gas target
 - cryogenically cooled
 - commissioned with ¹⁴C(*d*,*p*)¹⁵C, ¹⁴C(³He,*d*)¹⁵N Spring 2013

- Direct (α, p) measurement needs:
 - ⁴He gas target
 - cryogenically cooled
 - commissioned with ¹⁴C(*d*,*p*)¹⁵C, ¹⁴C(³He,*d*)¹⁵N Spring 2013
 - heavy-ion recoil detector
 - recoil identification
 - beam monitoring/normalization
 - position information

- Direct (α, p) measurement needs:
 - ⁴He gas target
 - cryogenically cooled
 - commissioned with ¹⁴C(*d*,*p*)¹⁵C, ¹⁴C(³He,*d*)¹⁵N Spring 2013
 - heavy-ion recoil detector
 - recoil identification
 - beam monitoring/normalization
 - position information

C. M. Deibel INPC September 13, 2016

First Direct (α ,p) Study with HELIOS: ²⁰Ne(α ,p)²³Na

- Direct study of ²⁰Ne(α ,p)²³Na
 - protons detected in HELIOS Si array
 - ²³Na detected in ionization chamber
 - normalized via known (*d*,*p*) reaction

C. M. Deibel

Part I completed December 2014

 – E_{beam} = 107, 100, 88 MeV

INPC

September 13. 2016

First Direct (α ,p) Study with HELIOS: ²⁰Ne(α ,p)²³Na

- Direct study of ²⁰Ne(α ,p)²³Na
 - protons detected in HELIOS Si array
 - ²³Na detected in ionization chamber
 - normalized via known (d,p) reaction
- Part I completed December 2014

 E_{beam} = 107, 100, 88 MeV

First Direct (α ,p) Study with HELIOS: ²⁰Ne(α ,p)²³Na

Z (cm)

Z (cm)

Part II completed July 2015

•

²⁰Ne(α ,p)²³Na Cross Sections

- Normalized cross section for ²⁰Ne(α,p)²³Na:
 - in agreement with Hauser-Feshbach calculations
 - in agreement with inverse reaction cross section
- Future plans:
 - determining contribution from excited states (present data)
 - measurements at more (and lower) energies
 - study affects on SNeIa models

Current Developments: ANASEN

- Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN)
 - designed for direct (α, p) reaction studies
 - extended, active gas target
 - proportional counter
 - Si detector array

19 Anode PC

Current Developments: ANASEN

- Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN)
 - designed for direct (α, p) reaction studies
 - extended, active gas target
 - proportional counter
 - Si detector array
- Nuclear Astrophysics measurements:
 - ¹⁴N(α ,p)¹⁷O (stable beam FSU)
 - ¹⁸Ne(α , p)²¹Na (RIB from RESOLUT @ FSU)
 - Kevin Macon, PhD Thesis (LSU)
 - 37 K(*p*,*p*) 37 K (first RIB measurement @ ReA3)

Summary

- (α, p) reactions play a significant role in stellar explosive nucleosynthesis
- Direct measurements are challenging:
 - radioactive ion beams
 - gas targets
 - low cross sections
- Multiple methods underdevelopment for direct (α, p) measurements:
 - HELIcal Orbit Spectrometer (HELIOS) at ATLAS facility
 - ANASEN
 - JENSA gas-jet target with Si detector array
- First direct measurement of ${}^{20}Ne(\alpha,p){}^{23}Na$:
 - proof-of-principle of HELIOS method
 - important for Type Ia Supernova nucleosynthesis

THANKS!

- ANL
 - Jason Clark
 - John Greene
 - Calem Hofman
 - Ben Kay
 - Richard Pardo
 - Ernst Rehm
 - Birger Back
 - Akaa Ayangeakaa
 - Melina Avila

- Louisiana State University
 - Jianping Lai
 - Jeff Blackmon
 - Daniel Santiago-Gonzalez
 - Kevin Macon (Postdoc Notre Dame)
 - Amber Lauer (graduate student)
 - Liudmyla Afanasieva (Postdoc WashU)
- Florida State University
 Sergio Almaraz

ATLAS staff and operators

- Direct (α, p) measurement needs:
 - ⁴He gas target
 - cryogenically cooled
 - commissioned with ¹⁴C(*d*,*p*)¹⁵C, ¹⁴C(³He,*d*)¹⁵N Spring 2013
 - heavy-ion recoil detector
 - recoil identification
 - beam monitoring/normalization
 - position information

C. M. Deibel INPC September 13, 2016