Direct (α,p) Reaction Measurements with HELIOS and the study of $^{20}\text{Ne}(\alpha,p)^{23}\text{Na}$

Jianping Lai, Daniel Santiago-Gonzalez
Catherine M. Deibel
Louisiana State University
\((\alpha, p)\) Reactions in Explosive Nucleosynthesis - XRBs

- **Type I X-ray bursts (XRBs):**
 - thermonuclear explosions on neutron star surface in binary system
 - \(T_{\text{peak}} = 1 - 2\) GK
 - time scale 10 – 100 s
 - recurrent events (hours to days)

- **Nucleosynthesis:**
 - triple-\(\alpha\) process
 - CNO breakout – \(^{18}\text{Ne}(\alpha, p)^{21}\text{Na}\)
 - \((\alpha, p)\) process
 - rapid proton capture (\(rp\)) process
 - synthesis up to \(A\sim100\)

(α,p) Reactions in Explosive Nucleosynthesis - XRBs

• Sensitivity studies of XRB nucleosynthesis:
 – vary reactions individually
 – show only a handful of reactions significantly effect bursts

• Effects of (α,p) reactions in XRBs:
 – shape of light curve
 – energy output
 – elemental abundances
 – double-peaked bursts(?)

Cyburt et al., 2016 (submitted)

(α,p) Reactions in Explosive Nucleosynthesis - SNeIa

• Type Ia Supernovae:
 – thermonuclear explosion of white dwarf star in binary system
 – progenitor uncertain
 – disruptive explosion; no remnant
 – $T_{\text{peak}} \sim 8$ GK

• Nucleosynthesis in SNeIa:
 – C+C, C+O, O+O fusion
 – α-chain reactions
 – production of >50% Fe content of Galaxy

Bravo et al., PRC 85, 055805 (2012)
Type Ia Supernovae Sensitivity Studies

• Variation of reaction rates by factor of 10 up and down

• Two independent studies show high sensitivity to:
 - $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$
 - $^{12}\text{C} + ^{12}\text{C}$
 - $^{20}\text{Ne}(\alpha,p)^{23}\text{Na}$
 - $^{20}\text{Ne}(\alpha,\gamma)^{24}\text{Mg}$
 - $^{30}\text{Si}(p,\gamma)^{31}\text{P}$

Bravo et al., PRC 85, 055805 (2012)
Type Ia Supernovae Sensitivity Studies

- Variation of reaction rates by factor of 10 up and down

- Two independent studies show high sensitivity to:
 - $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$
 - $^{12}\text{C} + ^{12}\text{C}$
 - $^{20}\text{Ne}(\alpha,p)^{23}\text{Na}$
 - $^{20}\text{Ne}(\alpha,\gamma)^{24}\text{Mg}$
 - $^{30}\text{Si}(p,\gamma)^{31}\text{P}$

• Variation of reaction rates by factor of 10 up and down

• Two independent studies show high sensitivity to:
 - \(^{12}\text{C}(\alpha,\gamma)^{16}\text{O} \)
 - \(^{12}\text{C} + ^{12}\text{C} \)
 - \(^{20}\text{Ne}(\alpha,p)^{23}\text{Na} \)
 - \(^{20}\text{Ne}(\alpha,\gamma)^{24}\text{Mg} \)
 - \(^{30}\text{Si}(p,\gamma)^{31}\text{P} \)

Direct (α, p) measurements with HELIOS at Argonne National Laboratory

ATLAS
Direct \((\alpha, p)\) measurements with HELIOS

- HELIcal Orbit Spectrometer (HELIOS)
 - repurposed MRI magnet
 - magnetic field aligned with beam axis
 - commissioned 2008

- Ideal for studying reactions with radioactive ion beams
 - unique particle identification from time-of-flight
 - high geometrical efficiency
 - improve resolution (avoid kinematic compression)

\[^4\text{He}(^{34}\text{Ar}, p)^{37}\text{K} \text{ gs} \]
\[^4\text{He}(^{34}\text{Ar}, p)^{37}\text{K} 3 \text{ MeV} \]

<table>
<thead>
<tr>
<th>Particle</th>
<th>p</th>
<th>(^3\text{He})</th>
<th>d, (^4\text{He})</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOF(ns)</td>
<td>21.9</td>
<td>32.8</td>
<td>43.7</td>
<td>65.6</td>
</tr>
</tbody>
</table>
Direct \((\alpha, p)\) measurements with HELIOS

- Direct \((\alpha, p)\) measurement needs:
 - \(^4\text{He}\) gas target
 - cryogenically cooled
 - commissioned with \(^{14}\text{C}(d,p)^{15}\text{C}\), \(^{14}\text{C}(^{3}\text{He},d)^{15}\text{N}\) Spring 2013
Direct \((\alpha,p)\) measurements with HELIOS

- Direct \((\alpha,p)\) measurement needs:
 - \(^4\text{He}\) gas target
 - cryogenically cooled
 - commissioned with \(^{14}\text{C}(d,p)^{15}\text{C}, ^{14}\text{C}(^{3}\text{He},d)^{15}\text{N}\) Spring 2013
Direct (α,p) measurements with HELIOS

- Direct (α,p) measurement needs:
 - 4He gas target
 - cryogenically cooled
 - commissioned with 14C(d,p)15C, 14C(3He,d)15N Spring 2013
 - heavy-ion recoil detector
 - recoil identification
 - beam monitoring/normalization
 - position information
Direct \((\alpha,p)\) measurements with HELIOS

- **Direct \((\alpha,p)\) measurement needs:**
 - \(^4\text{He}\) gas target
 - cryogenically cooled
 - commissioned with \(^{14}\text{C}(d,p)^{15}\text{C}, \)^{14}\text{C}(^{3}\text{He},d)^{15}\text{N}\) Spring 2013
 - heavy-ion recoil detector
 - recoil identification
 - beam monitoring/normalization
 - position information

high rate: 500 kHz
energy resolution: <5%
position sensitivity
mass separation at low A
First Direct \((\alpha, p)\) Study with HELIOS: \(^{20}\text{Ne}(\alpha, p)^{23}\text{Na}\)

- Direct study of \(^{20}\text{Ne}(\alpha, p)^{23}\text{Na}\)
 - protons detected in HELIOS Si array
 - \(^{23}\text{Na}\) detected in ionization chamber
 - normalized via known \((d, p)\) reaction

- Part I completed December 2014
 - \(E_{\text{beam}} = 107, 100, 88\) MeV
First Direct (α,p) Study with HELIOS: $^{20}\text{Ne}(\alpha,p)^{23}\text{Na}$

- Direct study of $^{20}\text{Ne}(\alpha,p)^{23}\text{Na}$
 - protons detected in HELIOS Si array
 - ^{23}Na detected in ionization chamber
 - normalized via known (d,p) reaction

- Part I completed December 2014
 - $E_{\text{beam}} = 107, 100, 88$ MeV
First Direct \((\alpha,\rho)\) Study with HELIOS:
\(^{20}\text{Ne}(\alpha,\rho)^{23}\text{Na}\)

- Part II completed July 2015
- Normalization via \((\alpha,\alpha)\) scattering and \((d,\rho)\) on solid target
- Dissertation of Jianping Lai (LSU) – August 2016
\(^{20}\text{Ne}(\alpha,p)^{23}\text{Na} \) Cross Sections

- Normalized cross section for \(^{20}\text{Ne}(\alpha,p)^{23}\text{Na} \):
 - in agreement with Hauser-Feshbach calculations
 - in agreement with inverse reaction cross section

- Future plans:
 - determining contribution from excited states (present data)
 - measurements at more (and lower) energies
 - study affects on SNeIa models
Current Developments: ANASEN

- Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN)
 - designed for direct (α, p) reaction studies
 - extended, active gas target
 - proportional counter
 - Si detector array

Current Developments:

- ANASEN
- RIB
- p recoil (via window)

Kevin Macon, PhD Thesis (LSU)
- 37\(^{\text{K}}\)(p, p\(^{\text{37}}\)\(^{\text{K}}\)) (first RIB measurement @ ReA3)
Array for Nuclear Astrophysics and Structure with Exotic Nuclei (ANASEN)

- designed for direct \((\alpha,p)\) reaction studies
 - extended, active gas target
 - proportional counter
 - Si detector array

Nuclear Astrophysics measurements:

- \(^{14}\text{N}(\alpha,p)^{17}\text{O}\) (stable beam FSU)
- \(^{18}\text{Ne}(\alpha,p)^{21}\text{Na}\) (RIB from RESOLUT @ FSU)
 - Kevin Macon, PhD Thesis (LSU)
- \(^{37}\text{K}(p,p)^{37}\text{K}\) (first RIB measurement @ ReA3)
Summary

• \((\alpha,p)\) reactions play a significant role in stellar explosive nucleosynthesis

• Direct measurements are challenging:
 – radioactive ion beams
 – gas targets
 – low cross sections

• Multiple methods underdevelopment for direct \((\alpha,p)\) measurements:
 – HELIcal Orbit Spectrometer (HELIOS) at ATLAS facility
 – ANASEN
 – JENSA gas-jet target with Si detector array

• First direct measurement of \(^{20}\text{Ne}(\alpha,p)^{23}\text{Na}\):
 – proof-of-principle of HELIOS method
 – important for Type Ia Supernova nucleosynthesis
THANKS!

ATLAS staff and operators

ANL
- Jason Clark
- John Greene
- Calem Hofman
- Ben Kay
- Richard Pardo
- Ernst Rehm
- Birger Back
- Akaa Ayangeakaa
- Melina Avila

Louisiana State University
- Jianping Lai
- Jeff Blackmon
- Daniel Santiago-Gonzalez
- Kevin Macon (Postdoc – Notre Dame)
- Amber Lauer (graduate student)
- Liudmyla Afanasieva (Postdoc - WashU)

Florida State University
- Sergio Almaraz
Direct \((\alpha,p)\) measurements with HELIOS

- **Direct \((\alpha,p)\) measurement needs:**
 - \(^4\)He gas target
 - cryogenically cooled
 - commissioned with \(^{14}\)C\((d,p)^{15}\)C, \(^{14}\)C\((^{3}\)He,\(d)^{15}\)N Spring 2013
 - heavy-ion recoil detector
 - recoil identification
 - beam monitoring/normalization
 - position information

high rate: 500 kHz

energy resolution: <5%

position sensitivity

mass separation at low A