Consequences of Sub-Zeptosecond Lifetimes in Near-Barrier Reaction Dynamics

Mahananda Dasgupta

Department of Nuclear Physics, Australian National University, Canberra

With: K. J. Cook, D.J. Hinde, S. D. Kalkal, D. H. Luong, E.C. Simpson, E. Williams Collaboration: A. Diaz Torres (Italy), L. Gasques (Brazil), P.R.S. Gomes (Brazil)

Dasso et al., Nucl. Phys. A <u>405</u> (1983) 221 Rowley et al., Phys. Lett. B, <u>254</u>, 25 (1991)

Separation/breakup energy

What happens when nuclear decay lifetimes are similar to the collision time? (few 10⁻²² s)

Fusion suppression at above barrier energies

Fusion of ⁷Li+²⁰⁹Bi suppressed relative to single-barrier calculation – unlike ¹⁸O+¹⁹⁸Pt

Dasgupta *et al.*, PRL <u>82</u>, 1395 (1999) Dasgupta *et al.*, PRC <u>70</u>, 024606 (2004)

Complete fusion and breakup

Nucl. Phys. Rep. 424, 1 (2007)

Investigating mechanisms causing breakup

Measurements at sub-barrier energies: minimizes absorption

Measuring coincident charged fragments

BALiN array

Micron Semiconductor Double-Sided Silicon Strip Detectors

"lampshade" configuration: back angles "front-back" configuration: forward and backward angles

 $115^{\circ} < \theta < 170^{\circ}$ $30^{\circ} < \phi < 330^{\circ}$

Detector telescope giving p,d,t identification

Experimental Results: 2-D plots of coincident fragment energies E₁ vs. E₂ $^{7}Li + {}^{208}Pb$

D.H. Luong, ANU PhD Thesis

Q-value spectrum – transfer-triggered breakup

Luong et al., PRC 88, 034609 (2013)

Structure and thresholds

Long-lived and prompt breakup

Delayed Breakup

Disintegration far from the target following the population of a longlived resonance state.

Prompt breakup

Disintegration near the distance of closest approach. Different interaction between each fragment and the target.

Relative energy distributions

- Narrow resonances cannot affect fusion long-lifetime
- Assumed that prompt breakup is 50% incoming and 50% outgoing

D.H. Luong *et al.*, Phys. Lett. B695, 105 (2011)

<u>88,</u> 034609 (2013)

 α-d pairs - Q, E_{rel} consistent with n-transfer followed by breakup mostly from ⁶Li excited state at 2.18 MeV

Luong et al., Phys. Lett. 695, 105 (2011)

Breakup for ⁷Li incident on medium-mass target nuclei

- *p*-transfer forming ⁸Be dominates (driven by stability of α ; Q ≥ +9 MeV)
- No direct breakup (⁷Li $\rightarrow \alpha$ + t) seen for medium mass targets

Sunil Kalkal et al, in preparation Sunil Kalkal et al, PhysepReatio93, 044605 (2016)

Where does prompt breakup occur?

Incoming trajectory

Outgoing trajectory

Can influence fusion

Front-back angle detector configuration sensitive to disintegration before R_{min}

Breakup location from experimental observables

E.C. Simpson et al., Phys. Rev. C 93, 024605 (2016)

Ed Simpson, Talk later in this session

Breakup location from experimental observables

, recent work, unpublished (2016)

Effect of lifetime in prompt breakup location: <u>Sub-barrier</u> breakup measurements

Unbound state populated Immediate breakup Unbound state populated Lifetime delays breakup

Effect of lifetime in prompt breakup location: <u>Above-barrier</u> fusion suppression

Unbound state populated Immediate breakup Unbound state populated Lifetime delays breakup

Absolute breakup probabilities

- Breakup measurements made at a range of energies
- Probability as a function of distance of closest approach

Prompt breakup probabilities at the fusion barrier

Predict above-barrier complete and incomplete fusion

D.J. Hinde et al., PRL 89 (2002) 272701A. Diaz-Torres et al, PRL 98, 152701 (2007)

Experimental results demand advances in models

R. Rafiei et al., PRC 81, 024601 (2010) K. Cook et al., PRC 93, 064604 (2016)

Breakup lifetime and complete fusion suppression

K. Cook et al., PRC 93, 064604 (2016)

Breakup lifetime and complete fusion suppression

- What causes suppression of complete fusion?
 - thought to be due to breakup of weakly bound projectile

Direct breakup into cluster components

• Only significant for high Z_T

Breakup of projectile-like nucleus following transfer is most probable

Low Z_T: all breakup follows transfer

- Only breakup <u>before</u> the fusion barrier affects above-barrier fusion
 - suppression only if breakup occurs at <u>short timescales</u> (≤10⁻²¹s)
 - new observables can provide information on breakup location
 - fusion suppression not fully explained
- Quantum model needed to match latest experiments that are extremely sensitive to breakup modes and location
 - Lifetime of resonances (even if < zeptosecond) important
 - Are lifetimes affected by proximity to target nucleus?
 - Final goal model to understand complete and incomplete fusion

Projectile trajectory

β vs θ_{12} : asymptotic calculation

Observed prompt breakup modes

D.H. Luong et al., PRC <u>88</u>, 034609 (2013)

Breakup for ⁷Li incident on medium-mass target nuclei Particle identification by t.o.f. over 11 cm (Z=1,2)

- *p*-transfer forming ⁸Be dominates (driven by stability of α ; Q ≥ +9 MeV)
- No direct breakup (⁷Li $\rightarrow \alpha$ + t) seen for medium mass targets

Sunil Kalkal

Open questions

Limitations of a classical model of breakup?

Are resonance widths correct close to a heavy nucleus?

Mapping from below-barrier breakup to abovebarrier fusion and incomplete fusion:

Need absolute breakup probabilities

Detector system efficiency

