The ⁴⁰Ca + ^{58,64}Ni fusion reactions : interplay between inelastic and transfer channels

Sandrine Courtin IPHC and USIAS, Strasbourg, France

Outline

- Sub-barrier fusion in the Ca + Ni systems. Why?
- The fusion experiments and results
- Coupled-channels and Hartree-Fock calculations
- The transfer experiment and results
- Conclusions

- Fusion: dominant reaction mechanism in heavy-ion collisions at low bombarding energies
- Sub-barrier fusion

- Fusion: dominant reaction mechanism in heavy-ion collisions at low bombarding energies
- Sub-barrier fusion
- Nuclear structure vs reaction dynamics in ⁴⁰Ca+^{58,64}Ni

• Ni + Ni and Ca + Ca

C.L. Jiang et al., Nucl.Phys. A834 (2010) M. Beckerman et al., Phys.Rev.Lett. 45 (1980)

- ^{58,60,64}Ni vibrational, well known 1 and 2 phonon states
- ⁶⁴Ni+⁶⁴Ni 'a textbook example'

G. Montagnoli et al., Phys.Rev.C85(2012)

- ⁴⁸Ca 'stiff' / ⁴⁰Ca 'soft' (strong 3⁻)
- ⁴⁰Ca+⁴⁸Ca, hindrance shows up lower
- Qvalue (transfer) >0 for ⁴⁰Ca+⁴⁸Ca

- Effects of couplings on fusion well known for Ca and Ni
- Similar structure features for ⁵⁸Ni and ⁶⁴Ni / 6 neutrons

- Fusion of Ca+Ni below and around CB almost unknown (except Rochester data for ⁴⁰Ca +⁵⁸Ni, Sikora et al. (1979))
- Positive Q value for transfers for ⁴⁰Ca+⁶⁴Ni (+2n to +6n and -2p), negative for all transfers in ⁴⁰Ca+⁵⁸Ni

- Fusion cross section measurements from above to below the Coulomb barrier in at ⁴⁰Ca + ^{58,64}Ni INFN-LNL in Italy
- Electrostatic deflector

- Fusion cross section measurements from above to below the Coulomb barrier in at ⁴⁰Ca + ^{58,64}Ni INFN-LNL in Italy
- Electrostatic deflector

XTU Tandem accelerator

International Nuclear Physics Conference Adelaide Convention Centre, Australia 11-16 September 2016 high-quality and intense ${}^{40}Ca$ beam of \approx 9 p nA intensity (\approx 6 x 10¹⁰ p s⁻¹)

⁴⁰Ca

- Fusion cross section measurements from above to below the Coulomb barrier in at ⁴⁰Ca + ^{58,64}Ni INFN-LNL in Italy
- Electrostatic deflector

reaction chamber

 $^{58,64}\text{Ni}$ targets of 50 $\mu\text{g/cm}^2$ thickness deposited on a 20 $\mu\text{g/cm}^2$ ^{12}C backing

4 silicon detectors used as monitors

- Fusion cross section measurements from above to below the Coulomb barrier in at ⁴⁰Ca + ^{58,64}Ni INFN-LNL in Italy
- Electrostatic deflector

electrostatic deflector

- Fusion cross section measurements from above to below the Coulomb barrier in at ⁴⁰Ca + ^{58,64}Ni INFN-LNL in Italy
- Electrostatic deflector

detection system for the evaporation residues

International Nuclear Physics Conference Adelaide Convention Centre, Australia 11-16 September 2016 2 MCP detectors $t_{1,2}$ ionisation chamber: ΔE Si detector: E_R, t_3

$$TOF_1 = t_3 - t_1$$

 $TOF_2 = t_2 - t_1$
 $TOF_3 = t_3 - t_2$

- Fusion cross section measurements from above to below the Coulomb barrier in at ⁴⁰Ca + ^{58,64}Ni INFN-LNL in Italy
- Electrostatic deflector

detection system for the evaporation residues

PhD : D. Bourgin, University of Strasbourg

TDHF + BCS calculations / 1 parameter (Skyrme) / dynamical effects at the mean-field level

In collaboration with C. Simenel, Australian National University, Australia

TDHF + BCS

TDHF + BCS

TDHF + BCS

Particle number projection technique

Time-Dependent Hartree-Fock + BCS calculations with the EV8 and

TDHF3D codes

Particle number projection technique

Time-Dependent Hartree-Fock + BCS calculations with the EV8 and TDHF3D codes ↓ ↓

Nucleon transfer channels in ⁴⁰Ca + ^{58,64}Ni

Transfer probability measurements from above to below the Coulomb barrier at INFN-LNL (Italy)

^{58,64}Ni beams / 3 p nA intensity (≈ 2 x 10¹⁰ p s⁻¹)

PRISMA magnetic spectrometer

Nucleon transfer channels in ⁴⁰Ca + ^{58,64}Ni

Transfer probability measurements from above to below the Coulomb barrier at INFN-LNL (Italy)

PRISMA magnetic spectrometer

Nucleon transfer channels in ⁴⁰Ca + ^{58,64}Ni

Transfer probability measurements from above to below the Coulomb barrier at INFN-LNL (Italy)

reaction chamber

 CaF_2 target of 100 $\mu g/cm^2$ deposited on a 15 $\mu g/cm^2$ ^{12}C backing

PRISMA magnetic spectrometer

Nucleon transfer channels in ⁴⁰Ca + ^{58,64}Ni

Transfer probability measurements from above to below the Coulomb barrier at INFN-LNL (Italy)

PRISMA magnetic spectrometer

Nucleon transfer channels in ⁴⁰Ca + ^{58,64}Ni

Transfer probability measurements from above to below the Coulomb barrier at INFN-LNL (Italy)

 $MWPPAC : t_f$ $TOF = t_f - t_i$

PRISMA magnetic spectrometer

Nucleon transfer channels in ⁴⁰Ca + ^{58,64}Ni

Transfer probability measurements from above to below the Coulomb barrier at INFN-LNL (Italy)

ionisation chamber: ΔE , E

PRISMA magnetic spectrometer

Spectrum of A/q vs X_{fp}

Adelaide Convention Centre, Australia

11-16 September 2016

Spectrum of A/q vs X_{fp}

TDHF + BCS

Nucleon transfer probabilities $P_{tr} = N_{tr} / N_{el+inel}$ vs distance of closest approach D for ⁶⁴Ni + ⁴⁰Ca

Nucleon transfer probabilities $P_{tr} = N_{tr} / N_{el+inel}$ vs distance of closest approach D for ⁶⁴Ni + ⁴⁰Ca

Nucleon transfer probabilities $P_{tr} = N_{tr} / N_{el+inel}$ vs distance of closest approach D for ⁵⁸Ni + ⁴⁰Ca

$$D = \frac{Z_{p} Z_{t} e^{2}}{2E_{c.m.}} \left(1 + \frac{1}{\sin(\theta_{c.m.} / 2)} \right)$$

Nucleon transfer probabilities $P_{tr} = N_{tr} / N_{el+inel}$ vs distance of closest approach D for ⁵⁸Ni + ⁴⁰Ca

Back to coupled channels

 \rightarrow the parameters for the transfer coupling form factors are extracted from the measured transfer probabilities

 \rightarrow then these parameters are used in the coupled-channels calculations of fusion cross sections

In collaboration with G. Scamps, Tohoku University, Japan

Back to coupled channels

- the direct two-neutron transfer scheme does not seem to explain the importance of nucleon transfer channels for ${}^{40}Ca + {}^{64}Ni$ with $Q_{tr} > 0$
- underestimation of the sub-barrier fusion cross sections also observed for ⁴⁰Ca + ⁹⁶Zr with Q_{tr} > 0
 [G. Scamps and K. Hagino, Phys. Rev. C 92, 054614 (2015)]

Conclusions

- Study of ⁴⁰Ca+⁵⁸Ni and ⁴⁰Ca+⁶⁴Ni fusion reactions at energies above and below CB Nickel target nuclei : same structure features but different neutron numbers
- Influence of couplings to 2⁺, 3⁻ (⁴⁰Ca)
- Large influence of transfer channels in the ⁴⁰Ca+⁶⁴Ni system
- Transfer probabilities measured with the PRISMA spectrometer

... underestimated by CC calculations using form factors adjusted to transfer probabilities

- Challenges for the future
- Calculation including different parameters for the transfer channels
- complementary transfer probability measurements for ⁴⁰Ca + ⁵⁸Ni with Qtr < 0 around the Coulomb barrier
- New experimental setup for transfer measurements ?

... pave the way to exotic n-rich nuclei.

Collaboration

D. Bourgin, Florent Haas, G. Fruet, D. Montanari *IPHC and University of Strasbourg, France*

A. Stefanini, G. Montagnoli, E. Fioretto, F. Galtarossa³, A. Goasduff,
L. Corradi, F. Galtarossa, A. Goasduff, T. Mijatovic⁴, F. Scarlassara,
G. Zhang *INFN-LNL*, Legnaro, Italy

G. Montagnoli, F. Scarlassara, E. Strano, University of Padova, Italy

D. Ackermann GSI, Darmstadt Germany and GANIL, Caen, France

S. Szilner, T. Mijatovic, M. Varga Pajtler *RBI, Zagreb, Croatia*

Ni + ⁴⁰Ca fusion reactions

B. Pritychenko et al., Update of B(E2) and E(2⁺) evaluation near N≈Z≈28, At. Dat. Nucl. Dat. Tables (2012)

- Fusion of Ca+Ni below and around CB almost unknown (except Rochester data for ⁴⁰Ca +⁵⁸Ni, Sikora et al. (1979))
- Positive Q value for transfers for ⁴⁰Ca+⁶⁴Ni (+2n to +6n and -2p), negative for all transfers in ⁴⁰Ca+⁵⁸Ni (corrected for Coulomb, Q_{corr}=Q_{transfer}+V^c_{b-in}-V^c_{b-out})

System	+1n	+2n	+3n	+4n	-1p	-2p	-3p	-4p
$^{40}\text{Ca}+^{58}\text{Ni}$	-3.80	-2.52	-11.19	-14.21	-3.75	-3.60	-11.95	-15.97
$^{40}\text{Ca}+^{64}\text{Ni}$	-1.23	3.47	0.86	4.22	0.26	4.19	0.88	1.81

Transfer coupling form factors

C. H. Dasso and A. Vitturi, Phys. Lett. B **179**, 337 (1986) \rightarrow Q_{tr} and F_{tr} are adjusted to fit the measured fusion

$$F(r) = F_{tr} d \frac{V_N}{dr} \sim \frac{F_{tr} V_0}{a} e^{\frac{-(r-R_0)}{a}}$$
$$\left[F_{tr}\right] = fm, \left[V_0\right] = MeV, \left[a\right] = fm$$

G. Scamps and K. Hagino, Phys. Rev. C **92**, 054614 (2015) $\beta_{nn'}$ and $\alpha_{nn'}$ are adjusted to fit the measured transfer probabilities to be used in the coupled-channels calculations of fusion cross sections

