INPC 2016 – Adelaide

INPC 2016 – Adelaide

ELECTROPRODUCTION AND TRANSITION FORM FACTORS: ON THE ROAD TOWARDS UNDERSTANDING BARYON STRUCTURE

Philip Cole* (Idaho State University) on behalf of the CLAS Collaboration

September 16, 2016

*U.S. National Science Foundation grant NSF-PHY-1615146

Why N*s are important (quoted from Nathan Isgur¹)

- The first is that nucleons are the stuff of which our world is made.
- My second reason is that they are the simplest system in which the quintessentially nonabelian character of QCD is manifest.

• The third reason is that history has taught us that, while relatively simple, baryons are sufficiently complex to reveal physics hidden from us in the mesons.

¹Workshop on Excited Nucleons and Hadronic Structure (2000).

Baryon resonances (N*s and \Delta*s)

N*s are broadly overlapping

Hard to disentangle without polarization observables

Sept. 16, 2016 Electroproduction and Transition Form Factors - On the Road to a Baryon Spectroscopy P.L. Cole INPC 2016

Fundamental questions of bound states in QCD

1. How does nature achieve confinement?

2. How is confinement tied into dynamical chiral symmetry breaking, which describes the origin of most of the visible mass in the universe?

3. Can the fundamental QCD Lagrangian successfully describe the complex structure of all the N* states?

Degrees of Freedom

- What are the relevant degrees of freedom?
 - Meson-Baryon Cloud
 - Quark Core
- How do the degrees of freedom evolve for differing quantum numbers of an excited baryon (N*) states?

What do we want to learn? (Establish Baryon Spectrum)

• Understand the effective degrees-of-freedom underlying the N* spectrum.

- A vigorous experimental program is underway along two avenues
 - Search for undiscovered states in meson photoproduction to systematically characterize the excited baryon spectrum

7

- the photon beam can be circularly or linearly polarized
- the nucleon may be transversely or longitudinally polarized

(either target or beam may be polarized, both may be polarized, or neither the target nor the beam be polarized as the case may be)

The N(1900)3/2⁺ state

- State was solidly established in Bonn-Gatchina coupled-channel analysis making use of very precise KA cross-section and polarization data, lead to the *** rating in PDG2012.
- State confirmed in an effective Langrangian resonance model analysis of γp → K⁺Λ.
 O. V. Maxwell, PRC85, 034611, 2012
- State confirmed in a covariant isobar model single channel analysis of γp → K⁺Λ.
 T. Mart, M. J. Kholili , PRC86, 022201, 2012
- First baryon resonance observed and multiply confirmed in electromagnetic meson production.

=> Good candidate for **** state.

Evidence for new N* states and couplings

State N((mass)J ^P	PDG 2010	PDG 2012	ΚΛ	ΚΣ	Νγ
N(1710)1/2+	*** (not seen in GW analysis)	***	***	**	***
N(1880)1/2+		**	**	*	**
N(1895)1/2 ⁻		**	**	*	***
N(1900)3/2+	**	***	***	**	***
N(1875)3/2 ⁻		***	***	**	***
N(2150)3/2 ⁻		**	**		**
N(2000)5/2+	*	***	**	*	**
N(2060)5/2 ⁻		***		**	***

Bonn-Gatchina Analysis – A.V. Anisovich et al., EPJ A48, 15 (2012) (First coupled-channel analysis that includes nearly all new photoproduction data)

What do we want to learn? (Understand Baryon Structure)

• Understand the effective degrees-of-freedom underlying the N* spectrum.

- A vigorous experimental program is underway along two avenues
 - Search for undiscovered states in meson photo-/ electroproduction to systematically characterize the excited baryon spectrum
 - Measure the strength of resonance excitations vs time-distance scale in meson electroproduction (i.e. as a function of $Q^2 = -q^2$)

Hadron structure via electromagnetic probes

See Craig Robert's Talk

SU(6) x O(3) Classification of Baryons

See David Ireland's Talk

Electroexcitation of N/^Δ resonances

Real photon beam essential for establishing the N* spectrum

 Virtual photons probe resonance strength vs time-distance scale for measuring the N* structure, confirm/rule out new states from photoproduction

Sept. 16, 2016

See Annalisa D'Angelo's Talk

Summary of the Results on $\gamma_v pN^*$ Electrocouplings from CLAS

Exclusive meson electroproduction channels	Excited proton states	Q ² -ranges for extracted γ _v NN* electrocouplings, GeV ²
π ⁰ p, π⁺n	∆(1232)3/2⁺	0.16-6.0
	N(1440)1/2 ⁺ ,N(1520)3/2 ⁻ , N(1535)1/2 ⁻	0.30-4.16
π⁺n	N(1675)5/2 ⁻ , N(1680)5/2 ⁺ N(1710)1/2 ⁺	1.6-4.5
ղթ	N(1535)1/2 ⁻	0.2-2.9
π⁺ π⁻ p	N(1440)1/2+, N(1520)3/2-	0.25-1.50
	∆(1620)1/2 ⁻ , N(1650)1/2 ⁻ , N(1680)5/2 ⁺ , ∆(1700)3/2 ⁻ , N(1720)3/2 ⁺ , N'(1720)3/2 ⁺	0.5-1.5

PLANS:

The values of resonance electrocouplings can be found in: https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

 $\gamma_v pN^*$ electrocoupling of all prominent nucleon resonances in mass range $M_{N^*} < 2.0 \text{ GeV}$ will be determined from independent analyses of N π , N $\pi\pi$, and KY channels measured with the CLAS12 detector.

The Δ(1232)3/2⁺ transition

35% MB contributions needed to describe magnetic dipole transition at Q²=0.
 For G*_M the MB contribution are decreasing with increasing Q² to 10% @ 5 GeV²

• $R_{EM} = E_{1+}/M_{1+}$ and $R_{SM} = S_{1+}/M_{1+}$ are small and can be described with MB contributions only

Electrocouplings of 'Roper' N(1440)1/2+

Aznauryan et al. (CLAS), PRC80, 055203 (2009), V. Mokeev et al. (CLAS), PRC86, 035203 (2012)

- A_{1/2} exhibits unusual Q² behavior, disappears at Q²=0.5, becomes large at Q² > 1.5 GeV².
- In nrCQM the state is the first radial excitation of the nucleon $=> A_{1/2}(0) > 0$.
- nrQM failure led to more exotic explanations, e.g. hybrid state, pure Nσ molecule, Nρ.
- LC QM + Nσ reproduce main features at small and at large Q².

Sept. 16, 2016 Electroproduction and Transition Form Factors - On the Road to a Baryon Spectroscopy P.L. Cole INPC 2016 16

Roper resonance in 2002 & 2016

Electrocouplings of N(1520)3/2⁻

Electrocouplings of N(1680)5/2⁺

New Run Group Proposal (RG K) "Color Confinement and Strong QCD"

Hybrid Baryons PR12-16-010	Search for hybrid baryons (qqqg) focusing on 0.05 GeV ² < Q ² < 2.0 GeV ² in mass range from 1.8 to 3 GeV in KA, N $\pi\pi$, N π (A. D'Angelo)
KY Electroproduction PR12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables that will yield Q ² evolution of electrocoupling amplitudes <i>(D. Carman)</i>
DVCS PR12-16-010B	Access GPDs H, E, \tilde{H} , \tilde{E} using DVCS process ep \rightarrow ep γ and the DVMP process ep \rightarrow ep π^0 (<i>L.Elouadrhiri</i>)

Run Group conditions:

- $E_{b} = 6.6 \text{ GeV}, 50 \text{ days}$
- $E_{b} = 8.8 \text{ GeV}, 50 \text{ days}$

- Torus I = -3375 A (negatives outbending)
- FT, MM, RICH
- Polarized electrons, unpolarized LH₂ target
- L = 1x10³⁵ cm⁻²s⁻¹

First run group proposal for less than 5-pass beam

CLAS12 N* Program

E12-09-003	E12-06-108A	
Nucleon Resonance Studies with CLAS12	KY Electroproduction with CLAS12	
Burkert, Mokeev, Stoler, Joo, Gothe, Cole	Carman, Mokeev, Gothe	

Measure exclusive electroproduction cross sections from an unpolarized proton target with longitudinally polarized electron beam for Nπ, Nη, Nππ, KY:

 $E_b = 11 \text{ GeV}, Q^2 = 5 \rightarrow 12 \text{ GeV}^2, W \rightarrow 3.0 \text{ GeV}, \cos \theta_m^* = [-1:1]$

Key Motivations:

□ Study spectrum and structure of all prominent N* states vs. Q²

- A unique opportunity to explore the nature of confinement that is responsible for >98% of resonance masses and the emergence of N* states from QCD

■ KY data complement the $N\pi\pi$ data as independent information for high-mass states inaccessible with $N\pi$ final states

- Promising way to confirm signals of new N* states observed in photoproduction using search in multiple independent Q² bins

Daniel S. Carman Jefferson Lab

Resonances with the CLAS12 at high Q²<12 GeV² :

Emergence and Distribution of Mass

What have we have learned from N* studies?

- Evidence for many new states revealed in multichannel analysis – major impact from high precision KΛ and KΣ photoproduction reactions at CLAS.
- The CLAS data on $\gamma_{\nu}NN^*$ electrocouplings have revealed that the N* structure as being a complex interplay between the
 - inner core of three dressed quarks and
 - the external meson-baryon cloud.
- The relative contribution of quark degrees of freedom increases with Q² and is expected to be dominant at Q² > 5.0 GeV².

What do we seek to learn from N* studies?

- N* studies with the CLAS12 at low/intermediate Q² will allow us to
 - search for hybrid baryons
 - explore the emergence of Meson-Baryon Cloud
- Resonance electrocouplings at for low to high Q² will allow us to
 - study the confinement regime for the quark core.
 - map the quark mass function in the transition from confinement to perturbative QCD

THANKS

Sept. 16, 2016 Electroproduction and Transition Form Factors - On the Road to a Baryon Spectroscopy P.L. Cole INPC 2016

Electrocouplings in the Third Resonance Region (CLAS $\pi^+\pi^-p$ Electroproduction Data)

V.I. Mokeev and I.G. Aznauryan., Int. J. Mod. Phys. Conf. Ser. 26. 146080 (2014) V.I. Mokeev et al., PRC 93, 054016 (2016)

Independent fits in different W-intervals

green: 1.51<W<1.61 GeV red: 1.61<W<1.71 GeV black: 1.71<W<1.81 GeV magenta: 1.56<W<1.66 GeV blue: 1.66<W<1.76 GeV

- N* states in the 3rd resonance region which decay preferentially to the N $\pi\pi$ final states.
- The electrocouplings for the D(1620)1/2⁻, N(1650)1/2⁻, N(1680)5/2⁺, D(1700)3/2⁻, and N(1720)3/2⁺ resonances have become available for the first time.

Sept. 16, 2016 Electroproduction and Transition Form Factors - On the Road to a Baryon Spectroscopy P.L. Cole INPC 2016 26

γ_{ν} pN* Electrocouplings from N π , $\pi^{+}\pi^{-}$ p, and γ p Electroproduction

