

Exploring Nuclear Shell Evolution with Nucleon Transfer Reactions

<u>W.N. Catford</u>¹, A. Matta¹, N.A. Orr², A.J. Knapton¹, I.C. Celik¹, G.L. Wilson¹, G. Lotay¹, B. Fernández Domínguez³, C. Aa. Diget⁴, G. Hackman⁵

and the TIARA and SHARC/TIGRESS collaborations

¹University of Surrey, Guildford, Surrey, GU2 7XH, UK
 ²LPC, ENSICAEN, CNRS/IN2P3, UNICAEN, Normandie Université, 14050 Caen, France
 ³Universidade de Santiago de Compostela, 15754 Santiago de Compostela, Spain
 ⁴Department of Physics, University of York, York, YO10 5DD, UK
 ⁵TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

WILTON CATFORD

University of Surrey, UK

Experiments performed at TRIUMF and at Texas A&M University, USA

International Nuclear Physics Conference Adelaide Convention Centre, Australia

Adelaide Convention Centre, /

11-16 September 2016

Exploring Nuclear Shell Evolution with Nucleon Transfer Reactions

<u>W.N. Catford¹</u>, A. Matta¹, N.A. Orr², A.J. Knapton¹, I.C. Celik¹, G.L. Wilson¹, G. Lotay¹, B. Fernández Domínguez³, C. Aa. Diget⁴, G. Hackman⁵

and the TIARA and SHARC/TIGRESS collaborations

WILTON CATFORD

University of Surrey, UK

Experiments performed at TRIUMF and at Texas A&M University, USA

Adelaide, 1977

EXPLORING SHELL EVOLUTION with nucleon transfer reactions specifically, via (d,pγ) neutron transfer

(a) motivation: changing shell structure
(b) experiments: SHARC + TIGRESS + trifoil
(c) update on recent PLB ²⁵Na,pγ)²⁶Na
(d) new results from d(²⁴Na,pγ)²⁵Na
(e) new results from d(²⁸Mg,pγ)²⁹Mg
(f) perspectives: T-Rex at Texas A&M

Adelaide Oval close to 1977

²⁷ P	²⁸ P	²⁹ P	³⁰ P	³¹ P	³² P	³³ P	³⁴ P	³⁵ P	³⁶ P	³⁷ P	³⁸ P
²⁶ Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si
²⁵ AI	²⁶ AI	²⁷ AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI
²⁴ Mg	²⁵ Mg	^{₂6} Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg
²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na
²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne	³³ Ne
²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F	²⁸ F	²⁹ F	³⁰ F	³¹ F	

orange – nuclei studied by us, using (d,p) green – (a) N=20, (b) island of inversion (intruder structure dominates ground state structure)

G.L. Wilson et al.

Theory: effective spe's

Experiment: energies of just the lowest levels

- Our aim is to identify single-particle-like levels and determine their spin/parity
- We use the selective nature of (d,p) neutron transfer (with radioactive beams)
- We aim to track the evolution of these levels and compare to the shell model

 $S = |J\downarrow SP\uparrow \pi J\downarrow i\uparrow \pi |\uparrow 2$

spectroscopic factor
= overlap with pure SP state

 $| J\downarrow i\uparrow \pi > = \sqrt{S} | J\downarrow SP\uparrow \pi > + \sum k\uparrow m \alpha \downarrow k | J\downarrow k\uparrow \pi >$

- we measure transferred $\ell \downarrow n$
- we measure gamma-decays
- we aim to identify J and π
- we deduce S

 $S=|J\downarrow SP\uparrow\pi J\downarrow i\uparrow\pi |\uparrow 2$

spectroscopic factor
= overlap with pure SP state

Theory: effective spe's

Experiment: energies of just the lowest levels

- Our aim is to identify single-particle-like levels and determine their spin/parity
- We use the selective nature of (d,p) neutron transfer (with radioactive beams)
- We aim to track the evolution of these levels and compare to the shell model
- We use the large SF for theory/experimental states to associate them with each other
- Details of the precise numerical value of the SF don't affect this process
- Results will be shown here for Z=11,12 for N=14,15,17, probing higher orbitals

can make beams of VERY exotic nuclei and learn properties by removing neutrons **OR**

can learn the important interactions that explain the structure by isolating p-n interactions, using a **single nucleon** to probe the additional orbitals one at a time

thus **transfer** is an excellent way to isolate the separate interactions

G.L. Wilson et al., Physics Letters B 759 (2016) 417

Gemma Wilson, Surrey Proton Ex (keV) 0002 0009 0009 cascade decays eround state decan

Data from d(²⁵Na,p)²⁶Na at 5 MeV/A using SHARC at ISAC2 at TRIUMF

Ε_γ (keV)

Doppler corrected (β =0.10) gamma ray energy measured in TIGRESS

Excitation energy deduced from proton energy and angle

Experimental Results from studying d(²⁵Na,p)²⁶Na at TRIUMF

Differential cross sections and spectroscopic factors

First analysis of this type:

Each of these distributions is:

- (a) gated on a gamma-ray peak
- (b) background-subtracted
- (c) corrected for gamma ray efficiency
- (d) corrected for gamma ray branching ratio

G.L. Wilson et al., Physics Letters B 759 (2016) 417

Experimental Results from studying d(²⁵Na,p)²⁶Na at TRIUMF

comparison between revised shell model energies and SFs

the results are somewhat subtle

evidence for stronger influence of the 1p3/2 orbital in the low-lying negative parity states, compared to the less exotic isotone ²⁸Al

this is evidence for the 1p3/2 orbital becoming lower, relative to the 0f7/2 orbital which is clear, in ²⁷Ne and ²⁹Mg

the shell model works surprisingly well wbc spsdpf 0+1ħω

Experimental Results from studying d(²⁵Na,p)²⁶Na at TRIUMF

						single L analysis				two L analysis (where applicable)							
	No.	$\mathbf{E}_x^{(a)}$	$\mathbf{E}_x^{SM \ b)}$	J ^{π c)}	\mathbf{J}_{SM}^{π}	L	nlj	S	S^{SM}	${\rm L}_1$	$n_1l_1j_1$	S_1	S_1^{SM}	L_2	$n_2 l_2 j_2$	S_2	S_2^{SM}
UPDATE		0	0	3^{+}	3^{+}_{1}	*	$1s_{1/2}$		0.61	*	$1s_{1/2}$		0.61	*	$0d_{3/2}$		0.01
<u></u>		a anad													$0d_{5/2}$		0.01
		0.082^{a})	0.077	1+	1_{1}^{+}	*	$0d_{3/2}$		0.29								
8 new states		0.000	0.140	o+	0 +	0	$0d_{5/2}$	0.19	0.11	0	1	0.10	0.15	0	0.1	0.101	0.10
nlus		0.232	0.149	21	z_1	0	$1s_{1/2}$	0.13	0.15	0	$1s_{1/2}$	0.10	0.15	2	$0d_{3/2}$	0.19Ţ	0.10
		0.405	0.416	9+	9+	0	1	0.33	0.97	0	1	0.30	0.97	9	$0d_{5/2}$	0.134	0.09
4 new ℓ value	es	0.400	0.410	2	42	0	151/2	0.00	0.21	0	151/2	0.00	0.21	4	$0d_{5/2}$	0.10	0.03
		1.507	1.409	1+	1^{+}_{0}	2	0d2/9	0.39	0.09						043/2		0.00
					2		$0d_{5/2}$		0.10								
		1.805	1.676	(3^{+})	3^{+}_{2}	2	$0d_{3/2}$	0.37	0.33	2	$0d_{3/2}$	0.33†	0.33	0	$1s_{1/2}$	0.01‡	0.00
background							$0d_{5/2}$		0.02	2	$0d_{5/2}$		0.02				
subtraction		1.992	1.758	4+	4_{1}^{+}	2	$0d_{3/2}$	0.07	0.07								
		2.116	2.241	5^{+}	5^{+}_{1}	2	$0d_{5/2}$	0.16	0.08								
		2.195	2.142	2+	2^+_3	2	$0d_{3/2}$	0.49	0.06								
NEW		2.225	2.048	(4^{+})	4^+_2	2	$0d_{3/2}$	0.43	0.51								
gamma-rav		0.400	9.459	0+	o+		$0d_{5/2}$		0.01	0	1-	0.00	0.19	0	0.1	0.14	0.99
Barrina ray		2.423	2.402	(2^{-})	$\frac{24}{2^{-}}$	2	1.000		0.20	2	$18_{1/2}$	1 10	0.15	2	$1_{D_{3/2}}$	0.14	0.25
angular		2.040	2.550	(2)	21	0	$1p_{3/2}$		0.20	0	017/2 Ofr. /0	1.10	0.20	1	1P3/2	0.10	0.03
correlations		3.135	3.228	3-	3^{-}_{1}	1	1D2/9	0.07t	0.15	1	1D2/0	0.06 1	0.15	3	$0f_{7/2}$	0.10t	0.13
		0.100	0.220		-1	-	$1p_{1/2}$	0.0.1	0.02	-	1p _{1/2}	0.001	0.02		$0f_{5/2}$	01107	0.00
		3.511	3.513	4^{-}	4^{-}_{1}	1	$1p_{3/2}$	0.30	0.44	1	$1p_{3/2}$	0.25	0.44	3	$0f_{7/2}$	0.51†	0.00
I.C. Celik							- /				- /				$0f_{5/2}$		0.00
PhD thesis		4.087	3.690	2^{-}	2^{-}_{2}	3				1	$1p_{3/2}$	0.34	0.31	3	$0f_{7/2}$	0.78	0.03
Surroy 2015		4.239	3.975	4+	4_{5}^{+}	2	$0d_{3/2}$	0.12	0.12								
Surrey 2015		4.305	4.401	(5^{-})	5^{-}_{1}	3				1	$1p_{3/2}$	0.01	0.00	3	$0f_{7/2}$	0.25	0.46
		4.597	4.460	3-	3_{2}^{-}	3	$0f_{7/2}$			1	$1p_{3/2}$	0.02	0.10	3	$0f_{7/2}$	0.76	0.10
		4.800	4.730	4^{-}	$\frac{4}{c^{-}}$	3	$0f_{7/2}$	0.51	0.61	1	$1p_{3/2}$	0.00	0.05	3	$0f_{7/2}$	0.62	0.37
		4.917	4.001	(0)	0 ₁	0 0	$01_{7/2}$	0.51	0.01	1	1.5	0.00	0.99	9	Of	0.62	0.05
		$\frac{4.952}{5.000}$	4.770	$(3^{-} 4^{-})$	\mathcal{O}_4	د *	017/2			1	$1p_{3/2}$	0.00	0.20	0	017/2	0.03	0.00
		0.009		(0,4)													

Experimental Setup to Measure d(²⁴Na,p)²⁵Na at TRIUMF

d(²⁴Na,p)²⁵Na at 8.0 MeV/u with 10,000 pps

Excitation energy from (E, θ) of proton, MeV

Andy Knapton, Surrey PhD

Doppler corrected E(gamma), MeV

d(²⁴Na,p)²⁵Na at 8.0 MeV/u with 10,000 pps

Excitation energy from (E, θ) of proton, MeV

Andy Knapton, Surrey PhD

d(²⁴Na,p)²⁵Na – fits to excitation energy spectrum at each angle

Excitation Energy in ²⁵Na (MeV)

Andy Knapton, Surrey PhD

d(²⁴Na,p)²⁵Na – spectroscopic factors in ²⁵Na compared to theory

BIG IMPROVEMENTS IN LEVEL IDENTIFICATIONS

Andy Knapton, Surrey PhD

Using the ²⁵Na SFs to calculate ²⁴Al(p, γ)²⁵Si widths and $\omega\gamma$'s for novae

d(²⁸Mg,p)²⁵Na at 8.0 MeV/u with 3,000 pps

Secondary Beam

- ²⁸Mg beam 3000 pps at 8 AMeV → With strong contamination
 - → With strong contamination ²⁸Si cont. (3. 10⁵ pps) ²⁸Al cont. (300 pps)

Experiment – SHARC and TIGRESS at TRIUMF

Microscopic Shell Model 3/2* 0d3/2 2.13 3/2* 1p3/2 1.92 -1f7/2 1.43 0p3/2 1.09 3/2* 1p3/2 0.87 1d3/2 0.05 0s1/2 0.00 Exp Tsunoda

We have preliminary results from this experiment using a heavily contaminated beam.

New shell model calculations with realistic interactions and expanded sdpf model space... Tsunoda, Otsuka EEdf1 (EKK)

Too early to judge agreement.

Future plans – d(⁶⁰Cr,p)⁶¹Cr at 10.0 MeV/u

We have plans to move towards studying the second island of inversion e.g. via ⁶⁰Cr(d,p) at Texas A&M...

B.A. Brown, http://link.aps.org/doi/10.1103/Physics.3.104

Texas A&M– radioactive beams using gas catcher and cyclotron reacceleration

installed, first run

Aug 2016

zero-degree detection using Oxford MDM

THE OXFORD MDM-2 MAGNETIC SPECTROMETER

D.M. PRINGLE, W.N. CATFORD *, J.S. WINFIELD **, D.G. LEWIS, N.A. JELLEY and K.W. ALLEN

University of Oxford, Nuclear Physics Laboratory, Keble Road, Oxford, England

J.H. COUPLAND

Rutherford Appleton Laboratory, Chilton, Didcot, England

Nuclear Instruments and Methods A245 (1986) 230

TIARA for TEXAS

<u>Summary</u>

- We found that just outside the borders of the island of inversion, the shell model that was adapted for the island (i.e. USD-A, wbc) seems to work reasonably well we have very useful discussions with those developing the new EEdf1 interaction
- Even in some less exotic nuclei, the selectivity of (d,p) has been shown to be hugely powerful in identifying the most interesting states (for the first time) e.g. ²⁵Na, and WE STUDY THE SAME orbitals and physics as in much more exotic nuclei.
- The new technique of gating on the coincident gamma rays to separate states that are not otherwise resolved has worked well
- We are edging closer towards the island of inversion to test the shell model further and improve it, and have plans to move attention to the second island of inversion
- We are preparing for new availability of beams at Texas A&M (also HIE-ISOLDE and MUGAST at GANIL)

Summary

- We found that just outside the borders of the island of inversion, the shell model that was adapted for the island (i.e. USD-A, wbc) seems to work reasonably well we have very useful discussions with those developing the new EEdf1 interaction
- Even in some less exotic nuclei, the selectivity of (d,p) has been shown to be hugely powerful in identifying the most interesting states (for the first time) e.g. ²⁵Na, and WE STUDY THE SAME orbitals and physics as in much more exotic nuclei.
- The new technique of gating on the coincident gamma rays to separate states that are not otherwise resolved has worked well
- We are edging closer towards the island of inversion to test the shell model further and improve it, and have plans to move attention to the second island of inversion
 - We are preparing for new availability of beams at Texas A&M (also HIE-ISOLDE and MUGAST at GANIL)

In-built normalisation from d(²⁴Na,d)²⁴Na near 70° (lab)

centre of mass angle, degrees

<u>AIM</u>:

Perform fits to spectra of E_x for each of a number of angle bins

Constraints in fitting:

- Excitation energy scale calibration checked using states of known E_x e.g. 3.455 MeV
- Allow for slight shift from angle to angle, in case corrections are imperfect
- Constrain energies of peaks using evidence from E_x spectra and supporting gamma rays
- Constrain the widths guided by simulations (observe little E_x change, but angular dependence)

proton laboratory angle (degrees)