The JLEIC electron low Q² chicane and Compton polarimeter

INPC 2016 Alexandre Camsonne, David Gaskell, Joshua Hoskins Hall A Jefferson Laboratory September 12th 2016

JLEIC Layout

https://arxiv.org/abs/1504.07961

JLAB Campus Layout

CEBAF - Full Energy Injector

Performance of JLEIC Baseline Design

For a full acceptance detector

CM energy	GeV	21.9 (low)		44.7 (medium)		63.3 (high)		
		р	е	р	E	р	е	
Beam energy	GeV	30	4	100	5	100	10	
Collision frequency	MHz	476		476		159		
Particles per bunch	10 ¹⁰	0.66	3.9	0.66	3.9	2.0	2.8	
Beam current	A	0.5	3	0.5	3	0.5	0.72	
Polarization	%	>70%	>70%	>70%	>70%	>70%	>70%	
Bunch length, RMS	cm	2.5	1.2	1	1.2	2.5	1.6	
Norm. emitt., vert./horz.	μm	0.5/0.5	74/74	1/0.5	144/72	1.2/0.6	1152/576	
Horizontal and vertical β^*	cm	3	5	2/4	2.6/1.3	5/2.5	2.4/1.2	
Vert. beam-beam param.		0.01	0.02	0.006	0.014	0.002	0.013	
Laslett tune-shift		0.054	small	0.01	small	0.01	small	
Detector space, up/down	m	3.6/7	3/3.2	3.6/7	3/3.2	3.6/7	3/3.2	
Hour-glass (HG) reduction		0.89		0.	0.88		0.73	
Lumi./IP, w/HG, 10 ³³	cm⁻²s¹	1.9 4.6		1.0				
For a high(er) luminosity detector								
Horizontal and vertical β^*	cm	1.2	2	1.6 / 0.8	1.6 / 0.8	2 /1	1.6 / 0.8	
Vert. beam-beam param.		0.01	0.02	0.004	0.021	0.001	0.021	
Detector space, up/down	m	±4.5	±3	±4.5	±3	±4.5	±3	
Hour-glass (HG) reduction		0.67		0.74		0.58		
Lumi./IP, w/HG, 10 ³³	cm⁻²s¹	3.5		7.5		1.4		

•

5

Performance of JLEIC Baseline Design

		Electron	Proton	Deuteron	Helium	Carbon	Calcium	Lead
		е	Р	d	³ He++	¹² C ⁶⁺	⁴⁰ Ca ²⁰⁺	²⁰⁸ Pb ⁸²⁺
Beam energy	GeV	5	100	50	66.7	50	50	39.4
Particles/bunch	1010	3.9	0.66	0.66	0.33	0.11	0.033	0.008
Beam current	A	3	0.5	0.5	0.5	0.5	0.5	0.5
Polarization		> 70%	> 70%	> 70%	> 70%	-	-	-
Bunch length, RMS	cm	1.2	1	1	1	1	1	1
Norm. emit.,	μm	144/72	1/0.5	0.5/0.25	0.7/0.35	0.5/0.25	0.5/0.25	0.5/0.25
horz./vert.								
eta^* , hori. & vert.	cm	2.6/1.3*1	4/2	4/2	4/2	4/2	4/2	5/2.5
		(1.6/0.8)	(1.6/0.8)	(1.6/0.8)	(1.6/0.8)	(1.6/0.8)	(1.6/0.8)	(1.6/0.8)
Vert. beam-beam		0.014^{*2}	0.006	0.006	0.006	0.006	0.006	0.005
parameter		(0.02)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Laslett tune-shift			0.01	0.041	0.022	0.041	0.041	0.041
Detector space, up	m	3.2 / 3	7 / 3.6					
& down stream		(3)	(4.5)					
Hour-glass (HG)			0.89	0.89	0.89	0.89	0.89	0.89
reduction factor			(0.74)	(0.74)	(0.74)	(0.74)	(0.74)	(0.74)
Lumi./IP/ nuclei ,	1033		4.6	4.6	2.2	0.77	0.23	0.04
w/HG correction	cm ⁻² s ⁻¹		(7.5)	(9.2)	(3.7)	(1.37)	(0.38)	(0.08)
Lumi./IP/ nucleon ,	1033		4.6	9.2	6.6	9.2	9.2	7.8
w/HG correction,	cm ⁻² s ⁻¹		(7.5)	(15.1)	(11.1)	(15.1)	(15.1)	(17.3)

Electron Collider Ring

- Electron collider ring design
 - Circumference of 2154.28 m = 2 x 754.84 m arcs + 2 x 322.3 m straights
 - Reuses PEP-II magnets, vacuum chambers and RF

- Beam characteristics
 - **3A** up to 6.95 GeV, **0.72A** at 10 GeV
 - Synchrotron radiation power density 10kW/m
 - Total power **10 MW**

Electron Polarization

Electron polarization design:

- Vertically polarized (>85%) electron beam from CEBAF
- Vertical polarization in the arcs and longitudinal at collision points
- Spin rotator for the polarization rotation
- Compton polarimeter provides non-invasive measurements of polarization
- Average electron polarization reaches above 70%

Two macro bunches of 2.3 μ s = 1700 x 1.33 ns

Energy (GeV)	3	5	7	9	10
Estimated Pol. Lifetime (hours)	66	5.2	2.2	1.3	0.8

The low Q² chicane

D (m)

Low Q² tagger

Low-Q² electron tagger for quasi-real photoproduction

- C magnet
- Side window with long tracker (scintillator array or scintillating fiber)
- Possible close detector : silicon or diamond strip detector in roman pot for very low energy photon
- Designed momentum resolution of 10⁻³ on electron momentum

Low Q² electron chicane

Compton polarimeter

Goal is to push the uncertainty of the polarimeter towards 1 % or better

Challenges of EIC Compton polarimetry :

Higher energy = more synchrotron radiation at 11 GeV

Handle the higher currents ranging from 720 mA up to 3 A

eRD15 : EIC R&D funded to study Compton Electron detector Polarimetry at JLEIC

https://wiki.bnl.gov/conferences/index.php/EIC_R%25D

Compton polarimeter photon detector

- Lead tungstate calorimeter instead of GSO for 11 GeV operation
- 2x2 matrix couple to one PMT
- FADC Integrating method to be tested at high energy

Happex III results (2 GeV)

Friend Nucl.Instrum.Meth. A676 (2012) 96-105

Friend Phd Thesis CMU 2012

Systematic Errors				
Laser Polarization	0.80%			
Analyzing Power:				
Non-linearity	0.3%			
Electron Energy Uncertainty	0.1%			
Collimator Position	0.05%			
MC Statistics	0.07%			
Total on Analyzing Power	0.33%			
Gain Shift:				
Background Uncertainty	0.31%			
Pedestal Uncertainty	0.20%			
Total on Gain Shift	0.37%			
Total	0.94%			

Pe =89.41% Jefferson Lab

Compton polarimeter

Compton polarimeter electron detector

Plane 1 background corrected yield

Qweak measurement (1.1 GeV)

Q-Weak Run 2 – November 2011 to May 2012

P_{Moller} +/- stat (inner) +/- point-to-point systematic (0.54%) *P_{Compton}* +/- stat +/- preliminary systematic (0.6%)

0.64% normalization unc. not shown

Beamline Geometry in GEMC

- GEMC : Geant4 Monte Carlo is a front end to Geant4
- Beam pipe implemented
- All presentation simulation results only done with the chicane to speed up the studies
- Installed on batch computer farm to run high statistics and full setup

Signal to background with GEMC

Composite Detector Rate

20

- All Geant4 processes, chicane only
- Signal is consistent with Geant3 simulation
- Can simulate with full detector and IR

Measurement times

Energy	Current	1 pass laser (10 W)	FP cavity (1 kW)		
(GeV)	(A)	Rate (MHz)	Time (1%)	Rate (MHz)	Time (1%)	
3 GeV	3	26.8	161 ms	310	14 ms	
5 GeV	3	16.4	106 ms	188	9 ms	
10 GeV	0.72	1.8	312 ms	21	27 ms	

Typical measurement takes less than 1 second even at 10 Watts of laser power Baseline is no cavity unless additional background dominates

Conclusion

- The low Q² chicane location was integrated in the initial JLEIC design for photoproduction studies
- A Compton polarimeter naturally find its place in the Low Q² chicane with detection of photon and electron
- Electron beam polarization measurement at 1% level achieved for JLab 6 GeV
- Studies of detector at 11 GeV and development to handle the EIC higher current
 - Simulation work on going to optimize the design and background aiming at 1% accuracy
 - R&D on electron detector and electronics for fast radiation hard Compton electron detector in Roman Pot

Electron-Ion Collider User Group Satellite Meeting Adelaide Convention Centre, L2 Meeting Room (Plaza Level) Monday, September 12 from 5:45 to 7:00 pm Science And Status Of The Electron Ion Collider In The US Prof Abhay DESHPANDE (Stony Brook University) Hall L 13:35 Friday September 16th 2016

Backup

TOTEM detectors

Diamond detector

- Current TOTEM detector and electronics should accommodate eRHIC need to separate the different source
- Polarimetry only needs moderate timing resolution : will test with

ו:ב:

24

Synchrotron radiation

Roman pots from TOTEM

- For small angle detection
- Two chambers
- Thin window
- Can be moved in and out from beam
- Typical 10 to 15 sigma
- Up to 4-5 sigma in optimal places
- Might work for electron side at both JLEIC and eRHIC to be studied

26

Wakefield progress

Figure 2.1: LHC Power spectrum, measured before LS1 [33]. The power spectrum is more than 37 dB attenuated above ~ 1.2 GHz.

Figure 2.2: Before LS1 all Totem Roman Pots were box shaped (left). The empty space between the RP and the flange resonate at low frequency ($\sim 500 \text{ MHz}$) as visible in the simulated longitudinal impedance without ferrites (right).

Manpower

Individual	Institution	Task
Alexandre Camsonne	Jefferson Lab	Wakefield, general, postdoc supervision
David Gaskell	Jefferson Lab	Geant3, laser system, postdoc supervision
Joshua Hoskins	U. Manitoba	GEMC full simulation
Michael Sullivan	SLAC	Synchrotron
Haipeng Wang	Jlab SRF	Wakefield
Robert Rimmer	JLAB SRF	Wakefield
Christophe Royon	Kansas U.	Detector, electronics, Wakefield
Nicola Minafra	Kansas U.	Detector, electronics, Wakefield
Michael Murray	Kansas U.	Detector, electronics, Wakefield

Bunch Structure In Collider Ring

bunch train & polarization pattern in the collider ring

Bunch Pattern for Continuous Injection

• At 100nA average injected current, $P_{equ}/P_0 > 96\%$ for the whole energy range

30

Bunch Structure In Collider Ring

bunch train & polarization pattern in the collider ring

Bunch Pattern for Continuous Injection

• At 100nA average injected current, $P_{equ}/P_0 > 96\%$ for the whole energy range

22

