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■ The Magnetic Polarisability (β) is a fundamental property of a system of charged particles that
describes the systems response to an external magnetic field.

■ To calculate these on the Lattice we use,

◆ the Background Field Method.
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1. How is it done?

■ Background Field Method

2. Magnetic Polarisability

■ Correlator Ratios

■ Landau levels

■ Projections & Smearings

3. Results

■ Energy Shifts

■ Energy vs. Field Strength fits



Background Field Method
Background Field Method

September 16, 2016 Ryan Bignell (CSSM) 4 / 19

■ How is the uniform magnetic field put across the lattice?

D′
µ = ∂µ + g Gµ + qeAµqeAµ, U ′

µ(x) = Uµ(x) e
−i qe aAµ

■ Causes a shift in energy (small field limit) of the baryon.

E(B) =M − ~µ · ~B −
|qeB|

2M
−

4π

2
β B2 +O

(

B3
)

■ Magnetic moment µ and magnetic polarisability β.

■ Use of periodic boundary conditions impose a quantisation condition:

qeB a2 =
2π k

NxNy
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■ Through the International Lattice Data grid and PACS-CS Collaboration: S. Aoki, et al., Phys.
Rev. D79 (2009) 034503.

◆ Lattice Volume: 323 × 64

◆ Non-perturbative O(a)-improved Wilson quark action

◆ Iwasaki gauge action

◆ 2 + 1 flavour dynamical-fermion QCD

◆ Physical lattice spacing a = 0.0907 fm

◆ mπ = 413 MeV

■ Standard Interpolating Fields: χp1 =
(

uT C γ5 d
)

u, χn1 =
(

uT C γ5 d
)

d

■ Dynamical QCD configurations only - ’sea’ quarks experience no field.
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■ Recall the energy of baryon is

E(B) =M − ~µ · ~B −
|qeB|

2M
−

4π

2
β B2 +O

(

B3
)

■ Construct ratios of different spin and field direction different 2pt correlation functions.

R(B, t) =

(

G↓(B+, t) +G↑(B−, t)

G↓(0, t) +G↑(0, t)

) (

G↓(B−, t) +G↑(B+, t)

G↓(0, t) +G↑(0, t)

)

■ Then extract an effective energy in the standard manner.

δE(B) =
1

δt
log

(

R(B, t)

R(B, t+ δt)

)

=
1

2

(

|qeB|

2M
−

4π

2
β B2

)
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■ A charged particle in an external magnetic field sits in a superposition of energy levels

E2 = m2 + |qeB| (2n+ 1− α) + p2z

■ Quarks are charged - quarks also have Landau levels!

■ The Landau levels are closely grouped due to the small fields used.

■ Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.



Landau Levels
Magnetic Polarisability

September 16, 2016 Ryan Bignell (CSSM) 7 / 19

■ A charged particle in an external magnetic field sits in a superposition of energy levels

E2 = m2 + |qeB| (2n+ 1− α) + p2z

■ Quarks are charged - quarks also have Landau levels!

■ The Landau levels are closely grouped due to the small fields used.

■ Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.



Landau Levels
Magnetic Polarisability

September 16, 2016 Ryan Bignell (CSSM) 7 / 19

■ A charged particle in an external magnetic field sits in a superposition of energy levels

E2 = m2 + |qeB| (2n+ 1− α) + p2z

■ Quarks are charged - quarks also have Landau levels!

■ The Landau levels are closely grouped due to the small fields used.

■ Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.



Landau Levels
Magnetic Polarisability

September 16, 2016 Ryan Bignell (CSSM) 7 / 19

■ A charged particle in an external magnetic field sits in a superposition of energy levels

E2 = m2 + |qeB| (2n+ 1− α) + p2z

■ Quarks are charged - quarks also have Landau levels!

■ The Landau levels are closely grouped due to the small fields used.

■ Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.



QED Eigenmodes
Magnetic Polarisability

September 16, 2016 Ryan Bignell (CSSM) 8 / 19

Lowest lying eigenmode probability densities of lattice Laplacian operator.

■ Origin is centre of the x-y plane illustrated by bottom surface of the grid.

■ Set source wavefunction to be exactly these modes, i.e. 〈x|ψ〉 =
n
∑

i=1

〈x|νi〉
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■ Define QED eigenmode projection operator

Pn
QED(x, y) =

n=|3 qf kd|
∑

i=1

〈x|νi〉 〈νi|y〉

■ Also define QCD+QED eigenmode projection operator

Pn
QCD+QED(x, y) =

n=nmax
∑

i=1

〈x|λi〉 〈λi|y〉

■ and project the propagator

S(x, y, I, J) = PI(x, z)S(z, z
′)P †

J(z
′, y)

I and J describe which projection operator is used, i.e. I=QED or I=QCD+QED.
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■ Can apply standard Gaussian smearing in any combination of spatial dimensions.

■ Previous results found that a background field can change the wavefunction’s spatial extent.

■ Can be combined with eigenmode projections.

■ Smearing along field axis found to be essential to remove excited state contamination.

◆ This is particularly relevant as the projections are 2-dimensional processes only.

■ Wish to avoid large amounts of smearing at sink

◆ This reduces the signal.
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δE(B) =

(

|qeB|

2M
−

4π

2
β B2

)

■ To choose where to fit and obtain polarisability values, a number of factors are considered.

◆ The constant fits to the energy shifts as function of time.

◆ The fits to energy shifts as function of field strength, i.e. to

◆ We only consider the same fit window across all field strengths.

■ The χ2
dof of each of these fits must be in an acceptable range.
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■ For the first time it is possible to get plateaus in the energy shifts by using the projection methods.
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Nucleon Polarisability
Results
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■ From the quadratic term extract the polarisability

δE(B) ∝ −
4π

2
β B2

■ Nucleon polarisabilities are found to be

Experiment (mπ = 138 MeV) This Work (mπ = 413 MeV)

proton 2.5(4)× 10−4 fm3 1.15(24)× 10−4 fm3

neutron 3.7(12)× 10−4 fm3 1.31(38)× 10−4 fm3

■ Potential exists to make interesting predictions from lattice QCD.
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■ Expand to correlation matrix techniques

■ Chiral extrapolations to confront experiment

■ Fine tune source & sink combinations
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Effective energy of spin up & down components for neutron in smallest quantised field
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Magnetic polarisability of Neutron, compared with experimental results.
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■ Considerably easier than magnetic polarisability

■ Take a different ratio

R(B, t) =

(

G↓(B−, t) +G↑(B+, t)

G↓(B+, t) +G↑(B−, t)

)

■ to get an energy shift of

δEµ(B) = −µB +O
(

B3
)
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Energy shift for magnetic moment of the neutron.
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■ Extract magnetic moment from linear term

■ Background field results are prelimnary only

BFM (mπ = 413 MeV) 3PT (mπ = 413 MeV)

proton (βp) 2.184(22)µN 2.244(61)µN
neutron (βn) −1.371(14)µN −1.36(10)µN
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