Magnetic properties of the nucleon in a uniform background field

Ryan Bignell Waseem Kamleh, Derek Leinweber

CSSM

INPC 2016

Introduction

Introduction

- I The Magnetic Polarisability (β) is a fundamental property of a system of charged particles that describes the systems response to an external magnetic field.
- To calculate these on the Lattice we use,
 - the Background Field Method.

Outline

Introduction

- 1. How is it done?
 - Background Field Method
- 2. Magnetic Polarisability
 - Correlator Ratios
 - Landau levels
 - Projections & Smearings
- 3. Results
 - Energy Shifts
 - Energy vs. Field Strength fits

Background Field Method

How is the uniform magnetic field put across the lattice?

$$\mathcal{D}'_{\mu} = \partial_{\mu} + g \, G_{\mu} + q e \, A_{\mu} q e \, A_{\mu}, \quad U'_{\mu}(x) = U_{\mu}(x) \, \mathrm{e}^{-i \, q e \, a \, A_{\mu}}$$

Causes a shift in energy (small field limit) of the baryon.

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^{2} + \mathcal{O}(B^{3})$$

- Magnetic moment μ and magnetic polarisability β .
- Use of periodic boundary conditions impose a quantisation condition:

$$qe B a^2 = \frac{2\pi k}{N_x N_y}$$

Background Field Method

• How is the uniform magnetic field put across the lattice?

$$\mathcal{D}'_{\mu} = \partial_{\mu} + g \, G_{\mu} + q e \, A_{\mu}, \quad U'_{\mu}(x) = U_{\mu}(x) \, \mathrm{e}^{-i \, q e \, a \, A_{\mu}}$$

Causes a shift in energy (small field limit) of the baryon.

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^{2} + \mathcal{O}(B^{3})$$

• Magnetic moment μ and magnetic polarisability β .

Use of periodic boundary conditions impose a quantisation condition:

$$qe B a^2 = \frac{2\pi k}{N_x N_y}$$

Background Field Method

• How is the uniform magnetic field put across the lattice?

$$\mathcal{D}'_{\mu} = \partial_{\mu} + g \, G_{\mu} + q e \, A_{\mu}, \quad U'_{\mu}(x) = U_{\mu}(x) \, \mathrm{e}^{-i \, q e \, a \, A_{\mu}}$$

Causes a shift in energy (small field limit) of the baryon.

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2 + \mathcal{O}(B^3)$$

- Magnetic moment μ and magnetic polarisability β .
- Use of periodic boundary conditions impose a quantisation condition:

$$qe B a^2 = \frac{2\pi k}{N_x N_y}$$

Background Field Method

• How is the uniform magnetic field put across the lattice?

$$\mathcal{D}'_{\mu} = \partial_{\mu} + g \, G_{\mu} + q e \, A_{\mu}, \quad U'_{\mu}(x) = U_{\mu}(x) \, \mathrm{e}^{-i \, q e \, a \, A_{\mu}}$$

Causes a shift in energy (small field limit) of the baryon.

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2 + \mathcal{O}(B^3)$$

- Magnetic moment μ and magnetic polarisability β .
- Use of periodic boundary conditions impose a quantisation condition:

$$qe B a^2 = \frac{2\pi k}{N_x N_y}$$

Background Field Method

• How is the uniform magnetic field put across the lattice?

$$\mathcal{D}'_{\mu} = \partial_{\mu} + g \, G_{\mu} + q e \, A_{\mu}, \quad U'_{\mu}(x) = U_{\mu}(x) \, \mathrm{e}^{-i \, q e \, a \, A_{\mu}}$$

Causes a shift in energy (small field limit) of the baryon.

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2 + \mathcal{O}(B^3)$$

- Magnetic moment μ and magnetic polarisability β .
- Use of periodic boundary conditions impose a quantisation condition:

$$qe B a^2 = \frac{2\pi k}{N_x N_y}$$

Simulation Details

- Through the International Lattice Data grid and PACS-CS Collaboration: S. Aoki, et al., Phys. Rev. D79 (2009) 034503.
 - Lattice Volume: $32^3 \times 64$
 - Non-perturbative $\mathcal{O}(a)$ -improved Wilson quark action
 - ♦ Iwasaki gauge action
 - ◆ 2 + 1 flavour dynamical-fermion QCD
 - Physical lattice spacing a = 0.0907 fm
 - $m_{\pi} = 413 \text{ MeV}$
- Standard Interpolating Fields: $\chi_{p1} = (u^T C \gamma_5 d) u$, $\chi_{n1} = (u^T C \gamma_5 d) d$
- Dynamical QCD configurations only 'sea' quarks experience no field.

Simulation Details

- Through the International Lattice Data grid and PACS-CS Collaboration: S. Aoki, et al., Phys. Rev. D79 (2009) 034503.
 - Lattice Volume: $32^3 \times 64$
 - Non-perturbative $\mathcal{O}(a)$ -improved Wilson quark action
 - ♦ Iwasaki gauge action
 - 2 + 1 flavour dynamical-fermion QCD
 - Physical lattice spacing a = 0.0907 fm
 - $m_{\pi} = 413 \text{ MeV}$

Standard Interpolating Fields: $\chi_{p1} = (u^T C \gamma_5 d) u$, $\chi_{n1} = (u^T C \gamma_5 d) d$

Dynamical QCD configurations only - 'sea' quarks experience no field.

Simulation Details

- Through the International Lattice Data grid and PACS-CS Collaboration: S. Aoki, et al., Phys. Rev. D79 (2009) 034503.
 - Lattice Volume: $32^3 \times 64$
 - Non-perturbative $\mathcal{O}(a)$ -improved Wilson quark action
 - ♦ Iwasaki gauge action
 - 2 + 1 flavour dynamical-fermion QCD
 - Physical lattice spacing a = 0.0907 fm
 - $m_{\pi} = 413 \text{ MeV}$
- Standard Interpolating Fields: $\chi_{p1} = (u^T C \gamma_5 d) u$, $\chi_{n1} = (u^T C \gamma_5 d) d$
- Dynamical QCD configurations only 'sea' quarks experience no field.

Simulation Details

- Through the International Lattice Data grid and PACS-CS Collaboration: S. Aoki, et al., Phys. Rev. D79 (2009) 034503.
 - Lattice Volume: $32^3 \times 64$
 - Non-perturbative $\mathcal{O}(a)$ -improved Wilson quark action
 - ♦ Iwasaki gauge action
 - 2 + 1 flavour dynamical-fermion QCD
 - Physical lattice spacing a = 0.0907 fm
 - $m_{\pi} = 413 \text{ MeV}$
- Standard Interpolating Fields: $\chi_{p1} = (u^T C \gamma_5 d) u$, $\chi_{n1} = (u^T C \gamma_5 d) d$
- Dynamical QCD configurations only 'sea' quarks experience no field.

Magnetic Polarisability

Recall the energy of baryon is

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^{2} + \mathcal{O}(B^{3})$$

Construct ratios of different spin and field direction different 2pt correlation functions.

$$R(B,t) = \left(\frac{G_{\downarrow}(B+,t) + G_{\uparrow}(B-,t)}{G_{\downarrow}(0,t) + G_{\uparrow}(0,t)}\right) \left(\frac{G_{\downarrow}(B-,t) + G_{\uparrow}(B+,t)}{G_{\downarrow}(0,t) + G_{\uparrow}(0,t)}\right)$$

Then extract an effective energy in the standard manner.

$$\delta E(B) = \frac{1}{\delta t} \log \left(\frac{R(B,t)}{R(B,t+\delta t)} \right) = \frac{1}{2} \left(\frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2 \right)$$

Magnetic Polarisability

Recall the energy of baryon is

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2} \beta B^{2} + \mathcal{O}(B^{3})$$

Construct ratios of different spin and field direction different 2pt correlation functions.

$$R(B,t) = \left(\frac{G_{\downarrow}(B+,t) + G_{\uparrow}(B-,t)}{G_{\downarrow}(0,t) + G_{\uparrow}(0,t)}\right) \left(\frac{G_{\downarrow}(B-,t) + G_{\uparrow}(B+,t)}{G_{\downarrow}(0,t) + G_{\uparrow}(0,t)}\right)$$

Then extract an effective energy in the standard manner.

$$\delta E(B) = \frac{1}{\delta t} \log \left(\frac{R(B,t)}{R(B,t+\delta t)} \right) = \frac{1}{2} \left(\frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2 \right)$$

Magnetic Polarisability

Recall the energy of baryon is

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^{2} + \mathcal{O}(B^{3})$$

Construct ratios of different spin and field direction different 2pt correlation functions.

$$R(B,t) = \left(\frac{G_{\downarrow}(B+,t) + G_{\uparrow}(B-,t)}{G_{\downarrow}(0,t) + G_{\uparrow}(0,t)}\right) \left(\frac{G_{\downarrow}(B-,t) + G_{\uparrow}(B+,t)}{G_{\downarrow}(0,t) + G_{\uparrow}(0,t)}\right)$$

Then extract an effective energy in the standard manner.

$$\delta E(B) = \frac{1}{\delta t} \log \left(\frac{R(B,t)}{R(B,t+\delta t)} \right) = \frac{1}{2} \left(\frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2 \right)$$

Magnetic Polarisability

Recall the energy of baryon is

$$E(B) = M - \vec{\mu} \cdot \vec{B} - \frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^{2} + \mathcal{O}(B^{3})$$

Construct ratios of different spin and field direction different 2pt correlation functions.

$$R(B,t) = \left(\frac{G_{\downarrow}(B+,t) + G_{\uparrow}(B-,t)}{G_{\downarrow}(0,t) + G_{\uparrow}(0,t)}\right) \left(\frac{G_{\downarrow}(B-,t) + G_{\uparrow}(B+,t)}{G_{\downarrow}(0,t) + G_{\uparrow}(0,t)}\right)$$

Then extract an effective energy in the standard manner.

$$\delta E(B) = \frac{1}{\delta t} \log \left(\frac{R(B,t)}{R(B,t+\delta t)} \right) = \frac{1}{2} \left(\frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2 \right)$$

Magnetic Polarisability

$$E^{2} = m^{2} + |qeB| (2n + 1 - \alpha) + p_{z}^{2}$$

- Quarks are charged quarks also have Landau levels!
- The Landau levels are closely grouped due to the small fields used.
- Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.

Magnetic Polarisability

$$E^{2} = m^{2} + |qe B| (2n + 1 - \alpha) + p_{z}^{2}$$

- Quarks are charged quarks also have Landau levels!
- The Landau levels are closely grouped due to the small fields used.
- Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.

Magnetic Polarisability

$$E^{2} = m^{2} + |qeB| (2n + 1 - \alpha) + p_{z}^{2}$$

- Quarks are charged quarks also have Landau levels!
- The Landau levels are closely grouped due to the small fields used.
- Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.

Magnetic Polarisability

$$E^{2} = m^{2} + |qeB| (2n + 1 - \alpha) + p_{z}^{2}$$

- Quarks are charged quarks also have Landau levels!
- The Landau levels are closely grouped due to the small fields used.
- Takes longer in Euclidean time for levels above ground state to be exponentially suppressed.

QED Eigenmodes

Magnetic Polarisability

Lowest lying eigenmode probability densities of lattice Laplacian operator.

• Origin is centre of the x-y plane illustrated by bottom surface of the grid.

Set source wavefunction to be exactly these modes, i.e. $\langle x|\psi\rangle = \sum_{i=1}^{n} \langle x|\nu_i\rangle$

QED Eigenmodes

Magnetic Polarisability

Lowest lying eigenmode probability densities of lattice Laplacian operator.

• Origin is centre of the *x*-*y* plane illustrated by bottom surface of the grid.

Set source wavefunction to be exactly these modes, i.e. $\langle x|\psi\rangle = \sum_{i=1}^{n} \langle x|\nu_i\rangle$

September 16, 2016

QED Eigenmodes

Magnetic Polarisability

Lowest lying eigenmode probability densities of lattice Laplacian operator.

- Origin is centre of the x-y plane illustrated by bottom surface of the grid.
- Set source wavefunction to be exactly these modes, i.e. $\langle x|\psi\rangle = \sum_{i=1}^{n} \langle x|\nu_i\rangle$

QCD+QED Eigenmodes

Magnetic Polarisability

Define QED eigenmode projection operator

$$P_{QED}^{n}(x,y) = \sum_{i=1}^{n=|3q_f k_d|} \langle x|\nu_i \rangle \langle \nu_i|y \rangle$$

Also define QCD+QED eigenmode projection operator

$$P_{QCD+QED}^{n}(x,y) = \sum_{i=1}^{n=n_{max}} \langle x|\lambda_i \rangle \langle \lambda_i|y \rangle$$

and project the propagator

$$S(x, y, I, J) = P_I(x, z) S(z, z') P_J^{\dagger}(z', y)$$

I and J describe which projection operator is used, i.e. I=QED or I=QCD+QED.

QCD+QED Eigenmodes

Magnetic Polarisability

Define QED eigenmode projection operator

$$P_{QED}^{n}(x,y) = \sum_{i=1}^{n=|3q_f k_d|} \langle x|\nu_i \rangle \langle \nu_i|y \rangle$$

Also define QCD+QED eigenmode projection operator

$$P_{QCD+QED}^{n}(x,y) = \sum_{i=1}^{n=n_{max}} \langle x|\lambda_i \rangle \langle \lambda_i|y \rangle$$

and project the propagator

$$S(x, y, I, J) = P_I(x, z) S(z, z') P_J^{\dagger}(z', y)$$

I and J describe which projection operator is used, i.e. I=QED or I=QCD+QED.

September 16, 2016

QCD+QED Eigenmodes

Magnetic Polarisability

Define QED eigenmode projection operator

$$P_{QED}^{n}(x,y) = \sum_{i=1}^{n=|3q_f k_d|} \langle x|\nu_i \rangle \langle \nu_i|y \rangle$$

Also define QCD+QED eigenmode projection operator

$$P_{QCD+QED}^{n}(x,y) = \sum_{i=1}^{n=n_{max}} \langle x|\lambda_i \rangle \langle \lambda_i|y \rangle$$

and project the propagator

$$S(x, y, I, J) = P_I(x, z) S(z, z') P_J^{\dagger}(z', y)$$

I and J describe which projection operator is used, i.e. I=QED or I=QCD+QED.

- Can apply standard Gaussian smearing in any combination of spatial dimensions.
- Previous results found that a background field can change the wavefunction's spatial extent.
- Can be combined with eigenmode projections.
- Smearing along field axis found to be essential to remove excited state contamination.
 - This is particularly relevant as the projections are 2-dimensional processes only.
- Wish to avoid large amounts of smearing at sink
 - This reduces the signal.

- Can apply standard Gaussian smearing in any combination of spatial dimensions.
- Previous results found that a background field can change the wavefunction's spatial extent.
- Can be combined with eigenmode projections.
- Smearing along field axis found to be essential to remove excited state contamination.
 - This is particularly relevant as the projections are 2-dimensional processes only.
- Wish to avoid large amounts of smearing at sink
 - This reduces the signal.

- Can apply standard Gaussian smearing in any combination of spatial dimensions.
- Previous results found that a background field can change the wavefunction's spatial extent.
- Can be combined with eigenmode projections.
- Smearing along field axis found to be essential to remove excited state contamination.
 - This is particularly relevant as the projections are 2-dimensional processes only.
- Wish to avoid large amounts of smearing at sink
 - This reduces the signal.

- Can apply standard Gaussian smearing in any combination of spatial dimensions.
- Previous results found that a background field can change the wavefunction's spatial extent.
- Can be combined with eigenmode projections.
- Smearing along field axis found to be essential to remove excited state contamination.
 - This is particularly relevant as the projections are 2-dimensional processes only.
- Wish to avoid large amounts of smearing at sink
 - This reduces the signal.

- Can apply standard Gaussian smearing in any combination of spatial dimensions.
- Previous results found that a background field can change the wavefunction's spatial extent.
- Can be combined with eigenmode projections.
- Smearing along field axis found to be essential to remove excited state contamination.
 - This is particularly relevant as the projections are 2-dimensional processes only.
- Wish to avoid large amounts of smearing at sink
 - This reduces the signal.

Results

$$\delta E(B) = \left(\frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2\right)$$

To choose where to fit and obtain polarisability values, a number of factors are considered.

- The constant fits to the energy shifts as function of time.
- The fits to energy shifts as function of field strength, i.e. to
- We only consider the same fit window across all field strengths.
- The χ^2_{dof} of each of these fits must be in an acceptable range.

Results

$$\delta E(B) = \left(\frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2\right)$$

To choose where to fit and obtain polarisability values, a number of factors are considered.

- The constant fits to the energy shifts as function of time.
- The fits to energy shifts as function of field strength, i.e. to
- We only consider the same fit window across all field strengths.
- The χ^2_{dof} of each of these fits must be in an acceptable range.

Results

$$\delta E(B) = \left(\frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2\right)$$

To choose where to fit and obtain polarisability values, a number of factors are considered.

- The constant fits to the energy shifts as function of time.
- The fits to energy shifts as function of field strength, i.e. to
- We only consider the same fit window across all field strengths.

The χ^2_{dof} of each of these fits must be in an acceptable range.

Results

$$\delta E(B) = \left(\frac{|qeB|}{2M} - \frac{4\pi}{2}\beta B^2\right)$$

To choose where to fit and obtain polarisability values, a number of factors are considered.

- The constant fits to the energy shifts as function of time.
- The fits to energy shifts as function of field strength, i.e. to
- We only consider the same fit window across all field strengths.
- The χ^2_{dof} of each of these fits must be in an acceptable range.

Neutron Energy Shifts for polarisability

Results

Smeared Source to QED eigenmode projected sink neutron energy shift

Neutron Energy Shifts for polarisability

Results

Smeared Source to QED eigenmode projected sink neutron energy shift

Neutron Energy Shifts for polarisability

Results

Smeared Source to QED eigenmode projected sink neutron energy shift

Neutron

Results

Proton Energy Shifts for polarisability

Results

Smeared Source to QCD+QED eigenmode projected sink proton energy shift

Proton Energy Shifts for polarisability

Results

Smeared Source to QCD+QED eigenmode projected sink proton energy shift

Proton Energy Shifts for polarisability

Results

Smeared Source to QCD+QED eigenmode projected sink proton energy shift

Proton

Results

Nucleon Polarisability

Results

From the quadratic term extract the polarisability

$$\delta E(B) \propto -\frac{4\pi}{2} \beta B^2$$

Nucleon polarisabilities are found to be

	Experiment $(m_{\pi} = 138 \text{ MeV})$	This Work $(m_{\pi} = 413 \text{ MeV})$
proton	$2.5(4) \times 10^{-4} \text{ fm}^3$	$1.15(24) \times 10^{-4} \text{ fm}^3$
neutron	$3.7(12) \times 10^{-4} \text{ fm}^3$	$1.31(38) \times 10^{-4} \ { m fm}^3$

Potential exists to make interesting predictions from lattice QCD.

Summary

- Expand to correlation matrix techniques
- Chiral extrapolations to confront experiment
 - Fine tune source & sink combinations

Summary

- Expand to correlation matrix techniques
- Chiral extrapolations to confront experiment
 - Fine tune source & sink combinations

Summary

- Expand to correlation matrix techniques
- Chiral extrapolations to confront experiment
- Fine tune source & sink combinations

Summary

Effective energy of spin up & down components for neutron in smallest quantised field

Chiral Extrapolations based on previous work

Bonus Slides

Magnetic polarisability of Neutron, compared with experimental results.

Magnetic Moment

Bonus Slides

- Considerably easier than magnetic polarisability
- Take a different ratio

$$R(B,t) = \left(\frac{G_{\downarrow}(B-,t) + G_{\uparrow}(B+,t)}{G_{\downarrow}(B+,t) + G_{\uparrow}(B-,t)}\right)$$

■ to get an energy shift of

$$\delta E_{\mu}(B) = -\mu B + \mathcal{O}(B^3)$$

Magnetic Moment

Bonus Slides

Energy shift for magnetic moment of the neutron.

Ryan Bignell (CSSM)

Magnetic Moment

Bonus Slides

- Extract magnetic moment from linear term
- Background field results are prelimnary only

	$BFM\ (m_{\pi} = 413 \ MeV)$	$3PT~(m_{\pi}=413~MeV)$
proton (β_p)	$2.184(22)\mu_N$	$2.244(61)\mu_N$
neutron (β_n)	$-1.371(14)\mu_N$	$-1.36(10)\mu_N$