Neutrino Nuclear Responses For Double Beta Decays And Supernova Neutrinos

INPC2016

Hidetoshi Akimune Konan University

Collaborators			Hidetoshi Akimune		Konan University
			Hiro Ejiri		RCNP, Osaka
			Dieter Frekers		Universität Münster
			Muhsin Harakeh		KVI-CART, Groningen
	T. Agodi	INS INFN Catania		N. Kalantar	KVI, Groningen
	M. Alanssari	IKP, Univ. Münster		A. Lennarz	IKP, Univ. Münster
	F. Cappuzzello	IKP, Univ. Münster		Y. Matsuda	Tohoku CYLIC
	D. Carbone	INS INFN Catania		P. Puppe	IKP, Univ. Münster
	M. Cavallaro	INS INFN Catania		P. Ries	TV Darmstadt
	F. Diel	K"oln University		C.Rigollet	IKP, Univ. Münster
	C. A. Douma	KVI, Groningen		J. Suhonen	Univ. Jyvaskyla
	H. Fujita	RCNP Osaka		A. Tamii	RCNP Osaka
	Y. Fujita	RCNP Osaka		K. Heguri	Konan University
	M. Fujiwara	RCNP Osaka		F. Hattori	Konan University
	G. Gey	RCNP Osaka		J. Gellanki	KVI, Groningen
	K. Hatanaka	Osaka University		V. Werner	TV Darmstadt
	M. Holl	IKP, Univ. Münster		R. Zegars	NSCL MSU
	A. InouePC2016	RCNP Osaka			

Double beta decay

• (A,Z) \rightarrow (A,Z+2) +2 e^- + $2\bar{\nu}_e$

- $Ov\beta\beta$: unique process to measure the characteristics of neutrino
 - Neutrino mass measurement via half-life measurement
 - Requires half-life measurements beyond 10²⁰ yrs!!!!

v-nuclear responses for $\beta\beta$ -v physics $T_{0\nu\beta\overline{\beta}}^{-1} = G^{0\nu} |\langle m_{\nu} \rangle|^2 |M^{0\nu}|^2$

v-nuclear response $[M^{0v}]^2$ is needed for m_v study_[1,2]

$$M^{0\nu} = \sum M_{+}M_{-}$$
 $M_{\pm} = (g_{A})^{eff} M_{\pm}(QPRA)$

- Nuclear models such as QRPA, IBM... include uncertain renormalization of axial weak coupling in the nuclear medium $(g_A)^{eff}$
 - We need experimental (g_A)^{eff} for [M^{0v}]

for relevant states to help theoretical calculations.

If $(g_A)^{\text{eff}}$ changes -10%, $[M^{ov}]^2$ changes -40% and

3 times larger detector is needed for same statistics

- Experiments,
 - (³He,t) RCNP : present , (p,n)
 - (n,p), (t,³He),(d,²He), (⁷Li,⁷Be),,,,
 - μ-capture MuSIC RCNP
 - γ-capture NewSUBARU

H. Ejiri, Phys. Rep. 338 (2000), JPSJ 74 (2005).
 J. Vergados, H. E, F. Simkovic, Rep. Prog. Phys. 75 (2012).

(³He,t) reaction at RCNP Osaka

- High energy resolution (ΔE~30 keV) is essential to separate intermediate states in DBD nuclei,
- At E/u = 140 MeV, relatively large V_{cr} and small V_{o}
- We have good data for Gamow -Teller and Spin-Dipole state on DBD nuclei [5] • So far, $M^{2\nu}$ for $2\nu\beta\beta$

$$M^{2\nu} = \sum M_{+}(GT1^{+})M_{-}(GT1^{+})$$

- 2 real v are in s-wave
- $M^{2\nu}$ are well reproduced_[6]. using $M_{\pm} = (g_A)^{eff} M_{\pm}(QRPA)$
- Next step, M^{ov} for $Ov\beta\beta$
 - To study v-mass

[5] H.Ejiri D. Frekers, N. Harakeh, H.A., et al., PRC 88 054329 (2013), C 86, 044603 (2012) C 84, 051305 (2011), C 77, 024307 (2008), C 74, 034333 (2006), C 74, 024309 (2006), C 70, 034318 (2004), C68, 064612 (2003), C64, 067302 (2001), PRL. 99 202501(2007), 85, 4442 (2000), 82, 3216 (1999), PLB 706, 134 (2011) .394B, 23 (1997) [6] H. Ejiri. JPSJ 78 (2009) 74201, 81 (2912) 33201

Spin Dipole (SD) 2⁻ for Ovββ

- Ονββ : virtual v exchange inside nuclei
 - $q \sim 1/r = 1-0.3 \text{ fm}^{-1}$, $rq=L\sim 1-2$ • $J_{\pi} = 2^{-}$ is the major component
- Cross Section for (³He,t) reaction ¹⁰⁰ $\sigma(SD) = KF(q,\omega) |J_{SD}|^2 B(SD)$ $M(SD) = g_A \tau [\sigma \times f(r)Y_1]_2 \quad B(SD) = \frac{|M(SD)|^2}{2J_1 + 1}$

• We aim

- to experimentally provide $|J_{SD}|^2$ to get M(SD) from σ (SD)
- M(SD) = (g_A)^{eff} M(QPRA) for
 strong SD states observed in DBD nuclei
- to help theories such as QRPA
- to test feasibility of (³He,t) for SD

J. Barea et al. PRC 91 034304 (2015)

Mass number A

[9] H. Ejiri, N. Soukouti, and J. Suhonen, Phys. Lett. B 729 (2014) 27.

Level diagrams for DBD nuclei and Benchmark nuclei with known *ft*

⁷⁴Ge(³He,t) ⁷⁴Ge, ¹²²Sn(³He,t) ¹²²Sb, ¹²⁴Te (³He,t) ¹²⁴I

- In May 2016, we performed (³He,t) experiment as benchmark for M(SD)
- Nuclei with large response ($M^{m}(SD)$) known from β decays.
- Unique σ , τ , l flip transitions
 - $[\sigma Y_1]_2 >> \delta p [\sigma Y_2]_2$
 - $\Delta J=2$, parity change
- Neighbor to DBD nuclei. $\sigma(SD)$'s were measured so far. □ ⁷⁶Ge, ^{128,130}Te
- ⁷⁴Ge and ¹²⁴Te: to see if any mass dependence of $|J_{SD}|^2$ ¹²²Sn (semi-magic) and ¹²⁴Te with similar A and QP: to see if any nuclear structure effects and to confirm

$$\sigma(SD) = KF(q,\omega) \left| J_{SD} \right|^2 B(SD)$$

Experiment at RCNP Osaka Univ.

- (³He,t) reaction at 420 MeV
 - High resolution spectrometer "Grand Raiden"
 - $\Delta E < 50 \text{ keV}$

• $\theta = 0$ to 5°

Target

- Germanium and Tellurium are known as materials which are very difficult to make thin foil: Hard and fragile.
- In order to achieve high resolution ($\Delta E \sim 30$ keV), very thin (less than 1 mg/cm²) foil is required.
- Vapor deposition on thin carbon foil
 - Carbon foil ~40 μg/cm²
 - ⁷⁴Ge, ¹²⁴Te ~ 250 μg/cm²

INS INFN Catania ITALY

INPC2016

^{128,130}Te ($\beta\beta$ nuclei) and ¹²⁴Te (benchmark) show clear GT and SD states

 RCNP high resolution system is the unique and only opportunity

⁷⁶Ge ($\beta\beta$ nuclei) and ⁷⁴Ge (benchmark)

^{74,76}Ge(³He,t)^{74,76}As Angular distribution

Estimation of M(SD2-)

- ⁷⁶As(g.s. 2⁻) -⁷⁶Ge(g.s. 0⁺)
 - B(F) = N-Z = 12
- → $B(SD) = 0.564 \beta$ -decay M(SD) = 1.68
- $^{74}As(g.s. 2^{-}) ^{74}Ge(g.s. 0^{+})$ • B(F) = N-Z = 10

 $\sigma_{SD}(q,\omega) = KF(q,\omega) |J_{SD}|^2 \operatorname{B}(SD2^{-})$ $\sigma_{IAS}(q,\omega) = KF(q,\omega) |J_{\tau}|^2 \operatorname{B}(F)$

IAS: σ_{IAS} is peaked at 0 deg. SD: σ_{SD} is peaked at 2.1 deg. for (³He,t) at 140 MeV/u

 B(SD) = 0.610±0.02
 M(SD)= 1.75±0.04
 Preliminarily Only statistical error

 $\frac{\sigma_{SD}(2.1 \deg, {}^{74}\text{Ge})}{\sigma_{IAS}(0.0 \deg, {}^{74}\text{Ge})} \Big/ \frac{\sigma_{SD}(2.1 \deg, {}^{76}\text{Ge})}{\sigma_{IAS}(0.0 \deg, {}^{76}\text{Ge})} = \frac{B(SD2^{-}, {}^{74}\text{Ge})}{B(F, {}^{74}\text{Ge})} \Big/ \frac{B(SD2^{-}, {}^{76}\text{Ge})}{B(F, {}^{76}\text{Ge})}$

Summary

- We will perform experiment on (³He,t) reaction from nuclei with known ft values of the first forbidden beta decay.
- We determined M(SD2-) from angular distribution of SD2- states in ββ nuclei (⁷⁴Ge)
- We aim to establish a method to estimate M^{0v} for ov double beta decay

X axis CER 2- cross sections corrected for distortions used for GT by Ejiri, Frekers, Harakeh, H.A. et al PRC 2010-2013.Y axix M(SD) calcurated by using experimental g A from ft data in neighboring nuclei by Ejiri

INPC2016

Motivation

1. v-nuclear responses for $\beta\beta - \nu$ & astro- ν studies T = G $[m_{\nu}M_{\beta\beta}]^2$ Nuclear response= $[M_{\beta\beta}]^2$ for m_{ν} study

$M^{0\nu}$ values depend on models (g_A) by a factor 3, equivalent to 100 in detector volume. Which is right ? or all are not right ??. We need experimental data to support and/or confirm theories.

- [1] H. Ejiri, Phys. Rep. 338 (2000) 265.
- [2] J. Vergados, H. Ejiri, F. Simkovic, Rep. Prog. Phys. 75 (2012) 106301.
- [3] H. Ejiri, J. Phys. Soc. Jpn. 74 (2005) 2101.

 $SN v_e$, v_x oscillation

