Sixth Asia-Pacific Conference on Few-Body Problems in Physics APFB 2014

> April 7-11, 2014 Hahndorf, Australia

NUCLEONIC SYSTEMS AND IN-MEDIUM NUCLEONS

Ulugbek Yakhshiev Inha University, Korea

CONTENT

- Topological models and soliton
- Medium modifications
 - Outer shell modifications
 - "Inner core" modifications
- Nuclear matter
 - Symmetric matter
 - □ Asymmetric matter
- Hadron properties in nuclear matter
- □ Finite nuclei
- Summary
- Outlook

Structure

- What is a nucleon and, in particular, its core?
- Core treatment depends from the energy scale
- At large number of colors it still has the mesonic content

Stabilization

- Soliton has a finite size and finite energy
- One needs at least two contrterms in the effective Lagrangian

Skyrme model [T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260(1961)]

Nonlinear chiral effective meson (pionic) theory)

$$\mathcal{L} = \frac{F_{\pi}^{2}}{16} \operatorname{Tr}(\partial_{\alpha}U)(\partial^{\alpha}U^{+}) + \frac{1}{32e^{2}} \operatorname{Tr}[U^{+}\partial_{\alpha}U, U^{+}\partial_{\beta}U]^{2}$$

Shrinks

Swells

Hedgehog soliton (nontrivial mapping)

$$U = \exp\left\{\frac{i\overline{\tau}(\overline{\pi})}{2F_{\pi}}\right\} = \exp\left\{i\overline{\tau}(\overline{n}F(r))\right\}$$

Original Lagrangian in use [G.S. Adkins *et al.* Nucl. Phys. B228 (1983)]

$$\boldsymbol{\ell}_{\text{free}} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial^{\alpha} U \right) \left(\partial_{\alpha} U^+ \right) + \frac{1}{32e^2} \operatorname{Tr} \left[U^+ \partial_{\alpha} U, U^+ \partial_{\beta} U \right]^2 + \frac{F_{\pi}^2 m_{\pi}^2}{16} \operatorname{Tr} \left(U + U^+ - 2 \right)$$

Nontrivial mapping

- It has topologically nontrivial solitonic solutions (separated in the different topological sectors) with the corresponding conserved topological number A
- Nucleon is quantized state of the classical soliton-skyrmion

$$B^{\mu} = \frac{1}{24\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} Tr(L_{\nu}L_{\alpha}L_{\beta}) \qquad L_{\alpha} = U^{+}\partial_{\alpha}U$$
$$\underbrace{A = \int d^{3}rB^{0}}_{H = M_{cl} + \frac{\overline{S}^{2}}{2I} = M_{cl} + \frac{\overline{T}^{2}}{2I},$$
$$|S = T, s, t \rangle = (-1)^{t+T}\sqrt{2T+1}D_{-t,s}^{S=T}(A)$$

 $U = \exp\{i\overline{\tau} \ \overline{\pi} / 2F_{\pi}\} = \exp\{i\overline{\tau} \ \overline{n}F(r)\}$

What happens in a nuclear medium?

- Medium effect
- One should be able to describe the possible phenomena
 - Deformations
 - Mass change
 - Swelling or shrinking
 - Change of NN interactions
 - Etc.

Modification of the mesonic sector modifies the baryonic sector

Question arises: How to modify the mesonic sector?

Soliton in Nuclear Medium (structure changes)

- Outer shell modifications
- Inner core modifications (in particular, at higher densities)

"Outer shell" modifications

- Three types of pions can be treated separately
- In nuclear matter, one considers three types of polarization operators
- There will be some parameters which correspond to the isospin breaking effects in the surrounding environment

$$\left(\partial^{\mu}\partial_{\mu} + m_{\pi^{(\pm,0)}}^2\right)\vec{\pi}^{(\pm,0)} = 0$$

$$\left(\partial^{\mu}\partial_{\mu} + m_{\pi^{(\pm,0)}}^{2} + \hat{\Pi}^{(\pm,0)}\right) \vec{\pi}^{(\pm,0)} = 0$$

	$\pi\text{-}\mathrm{atom}$	$T_{\pi} = 50 \text{ MeV}$
$b_0 [m_\pi^{-1}]$	- 0.03	- 0.04
$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
$c_0 \left[m_\pi^{-3} \right]$	0.23	0.25
$c_1 \left[m_{\pi}^{-3} \right]$	0.15	0.16
g'	0.47	0.47

"Outer shell" modifications [U.Meissner et al., EPJ A36 (2008)]

$$\mathcal{L}_{2}^{*} = -\frac{F_{\pi}^{2}}{16} \left\{ \alpha_{s}^{02} \operatorname{Tr} \left(\partial_{0} U \partial_{0} U^{+} \right) - \alpha_{p}^{0} \operatorname{Tr} \left(\partial_{i} U \partial_{i} U^{+} \right) \right\}$$
$$\mathcal{L}_{\chi SB}^{*} = \frac{F_{\pi}^{2} m_{\pi}^{2}}{8} \alpha_{s}^{00} \operatorname{Tr} \left(U - 1 \right)$$

- Due to the nonlocality of optic potential the kinetic term is also modified
- Due to energy and momentum dependence of the optic potential parameters following parts of the kinetic term is modified in different form:
 - Temporal part
 - Space part

$$\hat{\Pi} = 2\omega U_{opt} = \chi_s + \vec{\nabla} \cdot \chi_p \vec{\nabla}$$

	$\pi\text{-}\mathrm{atom}$	$T_{\pi} = 50 \text{ MeV}$
$b_0 [m_\pi^{-1}]$	- 0.03	- 0.04
$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
$c_0 \left[m_\pi^{-3} \right]$	0.23	0.25
$c_1 \left[m_{\pi}^{-3} \right]$	0.15	0.16
g'	0.47	0.47

"Inner core" modifications

[UY & H.Ch. Kim, PRC83 (2011); UY, JKPS62 (2013); UY, PRC88 (2013)]

- May be related to
 - vector meson properties in nuclear matter
 - nuclear matter properties

$$\mathcal{L}_{4}^{*} = -\frac{1}{16e_{\tau}^{*2}} \operatorname{Tr}[L_{0}, L_{i}]^{2} + \frac{1}{32e_{s}^{*2}} \operatorname{Tr}[L_{i}, L_{j}]^{2}$$

$$e \rightarrow e^* = e \gamma^{1/2}(\rho)$$

Final Lagrangian

[UY, JKPS62 (2013), UY, PRC88 (2013)]

Separated into two parts

$$\boldsymbol{\mathcal{L}}^* = \boldsymbol{\mathcal{L}}^*_{\mathrm{sym}} + \boldsymbol{\mathcal{L}}^*_{\mathrm{asym}}$$

Isoscalar part

$$\boldsymbol{\mathcal{L}}_{sym}^{*} = \boldsymbol{\mathcal{L}}_{2}^{*} + \boldsymbol{\mathcal{L}}_{4}^{*} + \boldsymbol{\mathcal{L}}_{\chi SB}^{*}$$

Isovector part

$$\boldsymbol{\mathcal{L}}_{asym}^{*} = \Delta \boldsymbol{\mathcal{L}}_{mes}^{*} + \Delta \boldsymbol{\mathcal{L}}_{env}^{*}$$

- Nuclear matter stabilization
- Asymmetric matter properties

$$\begin{aligned} \mathbf{\mathcal{L}}_{2}^{*} &= -\frac{F_{\pi}^{2}}{16} \left\{ \alpha_{s}^{02} \operatorname{Tr} \left(\partial_{0} U \partial_{0} U^{+} \right) - \alpha_{p}^{0} \operatorname{Tr} \left(\partial_{i} U \partial_{i} U^{+} \right) \right\} \\ \mathbf{\mathcal{L}}_{4}^{*} &= -\frac{1}{16e_{\tau}^{*2}} \operatorname{Tr} \left[L_{0}, L_{i} \right]^{2} + \frac{1}{32e_{s}^{*2}} \operatorname{Tr} \left[L_{i}, L_{j} \right]^{2} \\ \mathbf{\mathcal{L}}_{\chi SB}^{*} &= \frac{F_{\pi}^{2} m_{\pi}^{2}}{8} \alpha_{s}^{00} \operatorname{Tr} \left(U - 1 \right) \end{aligned}$$

$$\Delta \mathcal{L}_{\text{mes}}^* = -\frac{F_{\pi}^2}{32} \sum_{a=1}^2 (m_{\pi_{\pm}}^2 - m_{\pi_0}^2) \text{Tr}(\tau_a U) \text{Tr}(\tau_a U^+)$$
$$\Delta \mathcal{L}_{\text{env}}^* = -\frac{F_{\pi}^2}{16} m_{\pi} \alpha_e \varepsilon_{ab3} \text{Tr}(\tau_a U) \text{Tr}(\tau_b \partial_0 U^+)$$

 $m_{\pi} \rightarrow m_{\pi}^*,$

MEDIUM MODIFICATIONS

Reparametrization [UY, PRC88 (2013)]

Shell

modifications

 $F_{\pi,\tau} \to F_{\pi,\tau}^*, \quad e_{\tau} \to e_{\tau}^*, \\ F_{\pi,s} \to F_{\pi,s}^*, \quad e_s \to e_s^*$

Core

modifications

Five medium parameters

Rearranging

$$1 + C_1 \frac{\rho}{\rho_0} = f_1 \left(\frac{\rho}{\rho_0}\right) \equiv \sqrt{\frac{\alpha_p^0}{\gamma_s}}$$
$$1 + C_2 \frac{\rho}{\rho_0} = f_2 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{\alpha_s^{00}}{(\alpha_p^0)^2 \gamma_s}$$
$$1 + C_3 \frac{\rho}{\rho_0} = f_3 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{(\alpha_p^0 \gamma_s)^{3/2}}{\alpha_s^{02}}$$

$$\frac{\alpha_e}{\gamma_s} = f_4\left(\frac{\rho}{\rho_0}\right) \frac{\rho_n - \rho_p}{\rho_0} = \frac{C_4 \frac{\rho}{\rho_0}}{1 + C_5 \frac{\rho}{\rho_0}} \frac{\rho_n - \rho_p}{\rho_0}$$

Nucleon in nuclear matter

Isoscalar mass

$$m_{N,s}^{*} = M_{S}^{*} + \frac{3}{8\Lambda^{*}} + \frac{\Lambda^{*}}{2} \left(a^{*2} + \frac{\Lambda_{env}^{*2}}{\Lambda^{*2}} \right)$$

Isovector mass

$$\Delta m_{np}^* = a^* + \frac{\Lambda_{env}^*}{\Lambda^*}$$

Mass of the nucleon

$$m_{n,p}^* = m_{N,s}^* - \Delta m_{np}^* T_3$$

The binding-energy-formula terms in the present model

$$\varepsilon(A,Z) = -a_V + a_S \frac{(N-Z)^2}{A^2} + \dots$$

We are ready to reproduce

- Infinite and asymmetric nuclear matter
- Asymmetry term

Volume term

- Isospin asymmetric environment
- Surface and Coulomb terms
 - Nucleons in a finite volume
- Finite nuclei properties
 - Local density approximation

Volume term and Symmetry energy

At infinite nuclear matter approximation the binding energy per nucleon takes the form

$$\varepsilon(\lambda,\delta) = \varepsilon_V(\lambda) + \varepsilon_S \delta^2 + O(\delta^4) \equiv \varepsilon_V(\lambda) + \varepsilon_A(\lambda,\delta)$$

- λ is normalized nuclear matter density
- δ is asymmetry parameter
- \mathcal{E}_S is symmetry energy
- In our model
 - Symmetric matter $\mathcal{E}_V(\lambda) = m_{N,s}^*(\lambda,0) m_N^{\text{free}}$
 - Asymmetric matter

$$\varepsilon_{A}(\lambda,\delta) = \varepsilon(\lambda,\delta) - \varepsilon_{V}(\lambda)$$
$$= m_{N,s}^{*}(\lambda,\delta) - m_{N,s}^{*}(\lambda,0) + m_{N,V}^{*}(\lambda,\delta)\delta$$

Nuclear matter properties

Symmetric matter properties (pressure, compressibility and third derivative)

$$p = \rho_0 \lambda^2 \frac{\partial \varepsilon_V(\lambda)}{\partial \lambda} \Big|_{\lambda=1}, \quad K_0 = 9\rho^2 \frac{\partial^2 \varepsilon_V(\lambda)}{\partial \rho^2} \Big|_{\rho=\rho_0} \qquad Q = 27\lambda^3 \frac{\partial^3 \varepsilon_V(\lambda)}{\partial \lambda^3} \Big|_{\lambda=1}$$

Symmetry energy properties (coefficient, slop and curvature)

$$\varepsilon_s(\lambda) = \varepsilon_s(1) + \frac{L_s}{3}(\lambda - 1) + \frac{K_s}{18}(\lambda - 1)^2 + \dots$$

SYMMETRIC MATTER

Volume energy [UY, PRC88 (2013)]

- Set I solid
- Set II dashed
- Set III dotted

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions [PRC 58, 1804 (1998)] are given by stars. (From arigonna 2 body interactions + 3 body interactions)

SYMMETRIC MATTER

Pressure [UY, PRC88 (2013)]

For comparison: Right figure from Danielewicz- Lacey-Lynch, Science 298, 1592 (2002). (Deduced from experimental flow data and simulations studies)

ASYMMETRIC MATTER Symmetry energy

• Solid $L_s = 70 \,\mathrm{MeV}$

$$\Box$$
 Dashed $L_s = 40 \,\mathrm{MeV}$

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions [PRC 58, 1804 (1998)] are given by stars. (From arigonna 2 body interactions + 3 body interactions)

ASYMMETRIC MATTER

Pressure in neutron matter [UY, PRC88 (2013)]

For comparison: Right figure from Danielewicz- Lacey-Lynch, Science 298, 1592 (2002). (Deduced from experimental flow data and simulations studies)

ASYMMETRIC MATTER

Low density behavior of symmetry energy

For comparison: Trippa-Colo-Vigezzi [PRC 77, 061304 (2008)]; From analysis of GDR (208Pb).

Consequently one can predict in this model:

 $K_{\tau} = K_s - 6L_s$ $K_{0,2} = K_{\tau} - \frac{Q}{K_0}L_s$

 $23.3 < \varepsilon_{s} (\rho = 0.1 \text{fm}^{-3}) < 24.9 \text{ MeV}$

$\varepsilon_S(ho_0)$	L_S	K_S	K_{τ}	$K_{0,2}$	$\varepsilon_{s}(0.1 {\rm fm}^{-3}$
[MeV]	[MeV]	[MeV]	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	[MeV]
32	40	-181	-301	-257	25.15
32	50	-160	-310	-254	24.15
32	60	-126	-306	-239	23.22
32	70	-80	-290	-211	22.37
32	80	-21	-261	-172	21.57
32	90	50	-220	-119	20.82
32	100	134	-166	-55	20.13

For completeness [UY, PRC88 (2013)]

Symmetric matter – solid
 Neutron matter – dashed

For comparison: APR predictions [PRC 58, 1804 (1998)] are given by stars.

HADRON PROPERTIES IN NUCLEAR MATTER

Mean square radii of nucleons

- Electric-isoscalar solid curve
- Electric-isovector dashed curve
- Magnetic-isoscalar dashed curve
- Magnetic-isovector dotted curve

HADRON PROPERTIES IN NUCLEAR MATTER

Mean square radii of nucleons

- Neutron matter solid curve
- Symmetric matter dashed curve

Talk @ APFB2014, Hahndorf April 8, 2014

HADRON PROPERTIES IN NUCLEAR MATTER

Low energy constants in nuclear matter at ρ_0

$$F_{\pi,\tau} \to F_{\pi,\tau}^*, \quad F_{\pi,s} \to F_{\pi,s}^*$$

	Present model	ChPT [1]	QCD sum rules [2]
$F^*_{\pi,t}$ / F_{π}	0.37	0.74	0.79
$F_{\pi s}^*$ / F_{π}	0.72	< 0	0.78

[1] U. Meissner, J. Oller, A. Wirzba, Annals Phys. 297 (2002) 27.[2] H. Kim, M. Oka, NPA720 (2003) 368.

Talk @ APFB2014, Hahndorf April 8, 2014

FINITE NUCLEI

Nucleon in a nucleus (local density approximation)

 $f(F_{\tilde{r}\tilde{r}}, F_{\theta\theta}, F_{\tilde{r}}, F_{\theta}, \Theta_{\theta}, F, \Theta) = 0,$ $g(\Theta_{\theta\theta}, \Theta_{\theta}, F_{\tilde{r}}, F_{\theta}, \Theta, F) = 0,$

FINITE NUCLEI

Nucleon may deform [UY, et al., NPA200 (2002) 403]

The core modifications are not taken into account

SUMMARY

Within the applicability range, the model describes

- the single hadrons properties
 - in separate state
 - in the community of their partners
- as well as the properties of that whole community at same footing

OUTLOOK

Extensions and applicability of the approach

- Nucleon tomography in nuclear matter [H.Ch. Kim, UY, PLB726 (2013), arXiv:1304.5926]
- NN interactions in nuclear matter
- Neutron stars
- Finite nuclei properties
 - Mirror nuclei
 - Exotic nuclei
 - Halo nuclei
- Nucleon-knock out reactions
- Vector mesons in nuclear matter
 [J.H.Jung, UY, H.Ch.Kim, PLB 723 (2013), arXiv:1212.4616]

Talk @ APFB2014, Hahndorf April 8, 2014

Thank you for your attention!