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Physical interest

The physical proton-neutron mass splitting has been measured
extremely precisely,

Mp −Mn = −1.2933322(4) MeV .

Separation of the electromagnetic and u − d quark mass
difference contribution to the p-n mass difference is of
enormous interest

Mp −Mn = (Mp −Mn)|QED + (Mp −Mn)|QCD
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QCD Contribution

P.E. Shanahan et al., Phys. Lett. B 718(2013)1148
SU(3) χPT ⊕ Lattice data on octet baryon masses

(Mp −Mn)|QCD [MeV]

PACS-CS −2.9± 0.4

QCDSF-UKQCD −2.4± 0.3

Table: Proton and neutron mass difference due to QCD
interactions, corresponding to R = mu

md
= 0.553± 0.043.
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QED Contribution

The electromagnetic self-energy of the nucleon,

δMγ =
i

2M

α

(2π)3

∫

R

d4q
T

µ
µ (p, q)

q2 + iǫ
,

where Tµν is the spin averaged forward Compton scattering tensor

Tµν =
i

2

∑

σ

∫

d4xe iq·x〈pσ|T{Jµ(x)Jν(0)}|pσ〉 ,

Tµν(ν, q
2) =

−(gµν −
qµqν

q2
)T1(ν, q

2) +
1

M2
(pµ − p · q

q2
qµ)(pν −

p · q
q2

qν)T2(ν, q
2)
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Optical Theorem

2Im =
∑

n

2

The imaginary part of a forward scattering amplitude arises from a
sum of contributions from all possible intermediate states
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Cottingham Sum Rule

W. Cottingham, Ann. Phys. (N.Y.) 25(1963)424

Establish unsubtracted dispersion representations for
T1(ν,Q

2) and T2(ν,Q
2) in respect to ν

Separation between elastic and inelastic contributions

Ti = T el
i + T inel

i

where
T el
i ∼ GE ,M T inel

i ∼ F1,2(ν,Q
2)
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The dominate contribution comes from the elastic intermediate
state exchange,

δMγ ≈ δMγ
el = 0.76± 0.30 MeV

J. Gasser and H. Leutwyler, Phys. Rep. 87(1982)77
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Renormalization
J.C. Collins, Nucl. Phys. B 149(1979)90

Ti(ν,Q
2) ∼ 1/Q2 (Q2 → ∞)

Possible Subtraction
H. Harari, Phys. Rev. Lett. 17(1966)1303

T1(ν,Q
2): once subtraction

T2(ν,Q
2): no subtraction
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Subtracted Dispersion Representation

Recently, Walker-Loud et al.(WLCM) reanalyzed EM mass splitting
of proton and neutron with

Subtracted dispersion representation

δMγ = δMel + δM inel + δMel
sub + δM inel

sub + δM̃ct .

Modern knowledge on GE ,M and F1,2(x ,Q
2) from the latest

accurate experiments.

A. Walker-Loud et al., Phys. Rev. Lett. 108(2012)232301.
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Elastic contribution

δMel =
α

π

∫ Λ0

0
dQ

{

3
√
τelG

2
M

2(1 + τel )
+

[G 2
E − 2τelG

2
M ]

1 + τel

×
[

1 + τel)
3/2 − τ

3/2
el − 3

2

√
τel

]}

,

with τel = Q2/4M2.

GE , GM : EM Form Factors using Kelly parametrization
Kelly, Phys. Rev. C 70(2004)068202

δMel |p−n = 1.39(02) MeV

X. G. Wang Electromagnetic Mass Splitting of Proton and Neutron



Inelastic contribution

δM inel

=
α

π

∫ Λ0

0
dQ

∫ ∞

νth

{

3F1(ν,Q
2)

M

[

τ3/2 − τ
√
1 + τ +

√
τ/2

τ

]

+
F2(ν,Q

2)

ν

[

(1 + τ)3/2 − τ3/2 − 3

2

√
τ

]}

with τ = ν2/Q2.

F1, F2: Structure functions from Bosted and Christy
P.E. Bosted, M.E. Christy, Phys. Rev. C 77(2008)065206
M.E. Christy, P.E. Bosted, Phys. Rev. C 81(2010)055213

δM inel |p−n = 0.057(16) MeV
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elastic subtraction term

δMel
sub = − 3α

16πM

∫ Λ2
0

0
dQ2[2G 2

M(Q2)− 2F 2
1 (Q

2)]

= −0.62(02) MeV

inelastic subtraction term

δM inel
sub = −3βM

8π

∫ Λ2
0

0
dQ2Q2

(

m2
0

m2
0 + Q2

)2

where m2
0 = 0.71 GeV2 and βp−n = (−1± 1)× 10−4 fm3

taken from H.W. Griesshammer, et al., Prog. Part. Nucl.
Phys. 67(2012)841,

δM inel
sub |p−n = 0.47(47) MeV
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counter term

δM̃ct
p−n = 3α ln

(

Λ2
0

Λ2
1

)

e2umu − e2dmd

8πMδ
〈p|δ(ūu − d̄d)|p〉

where δ = (md −mu)/2.

In QCD, mu,d ∼ δ, so this contribution is numerically second
order in isospin breaking, O(αδ).

With Λ2
1 = 100 GeV2 and Λ2

0 = 2 GeV2,

|δM̃ct
p−n| < 0.02 MeV.
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Finally, the WLCM analysis led to a significantly larger numerical
value for the electromagnetic contribution to the p-n mass
difference but with a rather large error,

δMγ |p−n = 1.30(03)(47) MeV ,
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Lattice Simulations: QED+QCD

T. Blum et al., Phys. Rev. D 82(2010)094508
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Figure: The p-n mass difference due to QED interactions. 163

(squares) and 243 (circles) lattice sizes. The lattice cutoff
a−1 ≈ 1.78 GeV.
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LatticeSize (Mp −Mn)|QED (Mp −Mn)|QCD (Mp −Mn)

163 0.33(11) −2.265(70) −1.93(12)

243 0.383(68) −2.51(14) −2.13(16)

Table: Proton and neutron mass difference due to QED and QCD
interactions, in unit of MeV.
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Sz. Borsanyi et al. (BMW Collaboration), Phys. Rev. Lett.
111(2013)252001

(Mp −Mn)|QED (Mp −Mn)|QCD (Mp −Mn)

1.59(30)(35) −2.28(25)(7) −0.68(39)(36)

Table: Proton and neutron mass difference due to QED and QCD
interactions, in units of MeV. These results are obtained by
extrapolating to infinite volume limit.

Finite volume correction for EM contributions should be significant!
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Our work

We make a combined analysis of WLCM formalism with
lattice simulations.

WLCM(L,mπ) = LQCD(L,mπ)

Provide constraint on δM inel
sub

Extract the isovector nucleon magnetic polarizability βp−n

Reduce the uncertainty of δMγ
p−n
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Finite volume version

δMel (L) =
2πα

L3

∑

|Q|6=0

1

Q2

{

3
√
τelG

2
M

2(1 + τel)
+

[G 2
E − 2τelG

2
M ]

1 + τel

×
[

1 + τel)
3/2 − τ

3/2
el − 3

2

√
τel

]}

,

δMel
sub(L) = −3απ

4M

1

L3

∑

Q 6=0

1

|Q| [2G
2
M − 2F 2

1 ]

The integral over continuous variable
−→
Q is replaed by a sum over

the discrete values,

−→
Q =

2π

L
−→n , −→n ∈ Z

3 .
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EM Form Factors

In order to evaluate Eqs. (1) as a function of quark, or equivalently
pion mass, we use a parametrization of lattice data for the nucleon
isovector and isoscalar form factors introduced in J.D. Ashley et

al., Eur. Phys. J. A 19(2004)9,

G
v ,s
M =

µv ,s(mπ)

(1 + Q2/(Λv ,s
M )2)2

,

G
v ,s
E =

1

(1 + Q2/(Λv ,s
E )2)2

.

The electromagnetic form factors of proton and neutron can be
reconstructed by

G p(Q2,mπ) =
1

2
(G s + G v ) , G n(Q2,mπ) =

1

2
(G s − G v ) .
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Following D.B. Leinweber, Phys. Rev. D 60(1999)034014, one can
use a Padé approximant to parametrize the magnetic moments

µi (mπ) =
µ0

1− χi

µ0
mπ + cm2

π

,

χv = −8.82 and χs = 0 determined model independently
from chiral perturbation theory

µ0 and c are determined by fitting lattice data M. Gockeler et
al. (QCDSF Collaboration), Phys. Rev. D 71(2005)034508
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The dipole masses of isovector magnetic and electric form factors
are parametrized as

(Λv
M)2 =

12(1 + A1m
2
π)

A0 +
χ1

mπ

2
π arctan(µ/mπ) +

χ2

2 ln( m2
π

m2
π
+µ2 )

,

(Λv
E )

2 =
12(1 + B1m

2
π)

B0 +
χ2
2 ln( m2

π

m2
π
+µ2 )

,

where

χ1 =
g2
AmN

8πf 2π κv
, χ2 = −5g2

A + 1

8π2f 2π
,

with gA = 1.27 the axial coupling constant and fπ = 93MeV the
pion decay constant. mN = 940MeV is the nucleon mass and
κv = 4.2 is the isovector anomalous magnetic moment of the
nucleon (in the chiral limit).
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The isoscalar dipole masses are observed to be roughly linear in m2
π,

(Λs
E ,M)2 = aE ,M + bE ,Mm2

π .

The parameters are determined by fitting lattice data from QCDSF
Collaboration M. Gockeler et al. (QCDSF Collaboration), Phys.
Rev. D 71(2005)034508

A0 = 8.65 , A1 = 0.28 ,

B0 = 11.71 , B1 = 0.72 ,

aE = 1.09 , bE = 0.85 ,

aM = 1.09 , bM = 0.68 ,

and the arbitrary scale parameter µ = 0.14 GeV.
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δMel + δMel
sub
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Figure: Total elastic contribution to nucleon mass splitting at finite
volume. Lattice data are taken from Blum, PRD 82(2010)094508, 163

(squares) and 243 (circles) lattice sizes.
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δM inel + δM inel
sub

The discrepancy between the curves and lattice data may be
compensated by including the inelastic contribution.

δM inel = 0.057 MeV (WLCM)

δM inel
sub (L) = −3πβp−n

2

1

L3

∑

Q 6=0

|Q|
(

(Λv
M)2

(Λv
M)2 + Q2

)3

, (1a)

δM inel
sub (L) = −3πβp−n

2

1

L3

∑

Q 6=0

|Q|
(

(Λv
M)2

(Λv
M)2 + Q2

)4

, (1b)
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βp−n(mπ)

Table: The magnetic polarizability βp−n as a function of mπ, in units of
10−4 fm

3. δM inel
sub is given by Eq. (1a).

mπ[GeV] 0.279 0.394 0.558 0.683

163 −0.246± 0.103 −0.258± 0.040 −0.294 ± 0.030

243 −0.316 ± 0.171 −0.134± 0.060 −0.202± 0.030 −0.298 ± 0.020

Table: The magnetic polarizability βp−n as a function of mπ, in units of
10−4 fm3. δM inel

sub is given by Eq. (1b).

mπ[GeV] 0.279 0.394 0.558 0.683

163 −0.733± 0.307 −0.756± 0.118 −0.855 ± 0.087

243 −0.917 ± 0.498 −0.385± 0.172 −0.578± 0.087 −0.847 ± 0.057
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Chiral extrapolation

The nucleon electromagnetic polarizabilities have been investigated
in heavy baryon chiral perturbation theory V. Bernard, Phys. Rev.
Lett. 67(1991)1515; Phys. Lett. B 319(1993)269.

The quantity βp−n does not depend on the unknown low energy
constants c2 and c+. The 1/mπ terms in βp and βn will cancel
each other.

Finally we get

βp−n(mπ) = cl ln
mπ

MN

+ c0 + c1
mπ

MN

,

with the model independent coefficient cl = 2.51 × 10−4 fm3 fixed
by chiral perturbation theory.
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Figure: (left): βp−n given by fitting Tab. 4; (right): βp−n given by fitting
Tab. 5
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Physical result

Table: Fitted parameters and extrapolated βp−n at physical pion mass, in
unit of 10−4 fm3.

c0 c1 χ2
d.o.f βphy

p−n

cubic 4.83± 0.12 −6.88± 0.27 8.19/(7− 2) = 1.64 −0.98± 0.12

quartic 4.68± 0.34 −7.69± 0.78 8.68/(7− 2) = 1.74 −1.25± 0.36

We make a conservative estimate by taking the average value of
cubic and quartic results,

βp−n = (−1.12± 0.40) × 10−4 fm3 .
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In continuous limit, the inelastic subtraction term contributes to
the electromagnetic p-n mass splitting as

δM inel
sub |p−n = −3βp−n

8π

∫ ∞

0
dQ2Q2

(

(Λv
M)2

(Λv
M)2 + Q2

)3

= 0.30 ± 0.04 MeV , (2a)

δM inel
sub |p−n = −3βp−n

8π

∫ ∞

0
dQ2Q2

(

(Λv
M)2

(Λv
M)2 + Q2

)4

= 0.12 ± 0.04 MeV . (2b)

Again, we take the average value of the above two results,

δM inel
sub |p−n = 0.21± 0.11 MeV .
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Final result

Combining with the precisely determined part of WLCM analysis,

(δMel + δM inel + δMel
sub)|p−n = 0.83 ± 0.03 MeV .

We finally obtain the total electromagnetic contribution to the
proton-neutron mass splitting,

δMγ
p−n = 1.04 ± 0.11 MeV .
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Summary

We make a combined analysis of WLCM formalism with
lattice simulations.

The isovector nucleon magnetic polarizability βp−n is
extracted as a function of pion mass.

At physical pion mass,

βp−n = (−1.12 ± 0.40) × 10−4 fm3

δMγ
p−n = 1.04 ± 0.11 MeV
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Thanks for your patience
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