Few-Body Physics @ HI_γS

Werner Tornow

Duke University & Triangle Universities Nuclear Laboratory

Outline

High-Intensity Gamma-ray Source (HI_γS)

A=3

 γ -³He three-body breakup with double polarization

Outlook γ-³H three-body breakup Gerasimov-Drell-Hearn Sum Rule of the deuteron Compton scattering off the proton, deuteron and ³He

Future Upgrade

(A=12 system) ${}^{12}C(\gamma,3\alpha)$ and the 2⁺ excitation of the Hoyle 0⁺ state in ${}^{12}C$

High-Intensity Gamma-ray Source (HIγS) @ TUNL

HI_γS: Intracavity Compton-Back Scattering

Vladimir Litvinenko

World Data

HI_yS Data

from W. Tornow et al., Phys. Lett. B 702, 121 (2011)

World Data

HI_yS Data

Lorentz Integral Transform Trento Group

Giant Dipole Resonance

Wataru Horiuchi

from R. Raut, W. Tornow et al., PRL, 108, 042502 (2012)

World Data

HIyS Data

from W. Tornow *et al.*, PR C85, 061001R (2012)

A=3

 $\vec{\gamma} + {}^{3}\vec{\text{He}} \rightarrow p + p + n$

Three-body photodisintegration of ³He with double polarizations at 12.8 and 14.7 MeV at HIGS/TUNL facility (Haiyan Gao's group) We detect $\vec{\gamma} + \vec{^{3}He} \rightarrow p + p + n$ neutrons! **Two Primary Goals:** \bigcirc Test state-of-the-art three-body calculations made 0 by Deltuva [1] and Skibiński [2], and future EFT calculations. Important step towards investigating the GDH sum Ο rule for ³He below the pion production threshold : h=+1 S=+1/2 $I^{GDH} = \int_{V}^{\infty} \frac{dv}{v} \left[\sigma_{N}^{P}(v) - \sigma_{N}^{A}(v) \right] = \frac{4\pi^{2}\alpha}{M^{2}} \kappa_{N}^{2} I$ Lorentz & gauge invariance, crossing symmetry, causality and unitarity of the forward Compton scattering amplitude [1] A. Deltuva et al., Phys. Rev. C 71, 054005 (2005); Phys. Rev. S=-1/2 h=+1 C 72, 054004 (2005) and Nucl. Phys. A 790, 344c (2007). [2] R. Skibiński et al., Phys. Rev. C 67, 054001 (2003); R. Skibiński et al. Phys. Rev. C 72, 044002 (2005); R.Skibiński. Gerasimov-Drell-Hearn Private communications.

M. Amarian, PRL 89, 242301(2002) J.L. Friar et al. PRC 42, 2310 (1990) N. Bianchi, et al. PLB 450, 439 (1999)

HI_γS: Intracavity Compton-Back Scattering

Vladimir Litvinenko

2. Detectors in mu-metal shielding tubes

High-pressure hybrid ³He target polarized longitudinally using spin-exchange optical pumping

First Measurements of Spin-Dependent Double-Differential Cross Sections and the Gerasimov-Drell-Hearn Integrand from ${}^{3}\vec{H}e(\vec{\gamma}, n)pp$ at Incident Photon Energies of 12.8 and 14.7 MeV

G. Laskaris, ^{1,2,*} Q. Ye, ^{1,2,†} B. Lalremruata, ^{1,2,‡} Q. J. Ye, ^{1,2} M. W. Ahmed, ^{1,2,3} T. Averett, ⁴ A. Deltuva, ⁵ D. Dutta, ⁶ A. C. Fonseca, ⁵ H. Gao, ^{1,2} J. Golak, ⁷ M. Huang, ^{1,2} H. J. Karwowski, ^{1,8} J. M. Mueller, ^{1,2} L. S. Myers, ^{1,2} C. Peng, ^{1,2} B. A. Perdue, ^{1,2,§} X. Qian, ^{1,2,∥} P. U. Sauer, ⁹ R. Skibiński, ⁷ S. Stave, ^{1,2,¶} J. R. Tompkins, ^{1,8,**} H. R. Weller, ^{1,2} H. Witała, ⁷ Y. K. Wu, ^{1,2} Y. Zhang, ^{1,2} and W. Zheng^{1,2} ¹Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA ²Department of Physics, Duke University, Durham, North Carolina 27708, USA ³Department of Mathematics and Physics, North Carolina Central University, Durham, North Carolina 27707, USA ⁴College of William and Mary, Williamsburg, Virginia 23187, USA ⁵Centro de Física Nuclear da Universidade de Lisboa, P-1649-003 Lisboa, Portugal ⁶Mississippi State University, Mississippi State, Mississippi 39762, USA ⁷M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland ⁸Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA ⁹Institut für Theoretische Physik, Leibniz Universität Hannover, D-30167 Hannover, Germany (Received 5 March 2013; published 17 May 2013)

The first measurement of the three-body photodisintegration of longitudinally polarized ³He with a circularly polarized γ -ray beam was carried out at the High Intensity γ -ray Source facility located at Triangle Universities Nuclear Laboratory. The spin-dependent double-differential cross sections and the contributions from the three-body photodisintegration to the ³He Gerasimov-Drell-Hearn integrand are presented and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8 and 14.7 MeV. The data reveal the importance of including the Coulomb interaction between protons in three-body calculations.

Spin-Dependent Double Differential Cross Sections at 12.8 MeV

Solid curve: R. Skibiński *et al.*

Dotted curve: A. Deltuva, A. Fonseça

Spin-Dependent Single Differential Cross Sections at 12.8 MeV

Spin-Dependent Total Cross Sections and the GDH Integrand

ν	$\sigma^P(\mu b)$	$\sigma^A(\mu b)$	$(\sigma^P - \sigma^A) / v (fm^3)$
This work 12.8	$861 \pm 5 \pm 81$	$765 \pm 5 \pm 71$	$0.147 \pm 0.010 \pm 0.018$
Deltuva <i>et al.</i>	872	777	0.146
Skibiński <i>et al.</i>	956	872	0.131
This work 14.7	$999 \pm 5 \pm 89$	$869 \pm 5 \pm 78$	$0.174 \pm 0.011 \pm 0.020$
Deltuva <i>et al.</i>	1026	900	0.168
Skibiński <i>et al.</i>	1079	970	0.146

Deltuva

Outlook

What's next at HI_γS ?

A=3

γ + ³H three-body breakup

PHYSICAL REVIEW C 85, 064003 (2012)

Di-neutron and the three-nucleon continuum observables

H. Witała

M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland

W. Glöckle

Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany (Received 24 April 2012; published 25 June 2012)

We investigate how strongly a hypothetical ${}^{1}S_{0}$ bound state of two neutrons would affect observables in neutron-deuteron reactions. To that aim we extend our momentum-space scheme of solving the three-nucleon Faddeev equations and incorporate in addition to the deuteron also a ${}^{1}S_{0}$ di-neutron bound state. We discuss effects induced by a di-neutron on the angular distributions of the neutron-deuteron elastic scattering and deuteron breakup cross sections. A comparison to the available data for the neutron-deuteron total cross section and elastic scattering angular distributions cannot decisively exclude the possibility that two neutrons can form a ${}^{1}S_{0}$ bound state. However, strong modifications of the final-state-interaction peaks in the neutron-deuteron breakup reaction seem to disallow the existence of a di-neutron.

Emiko Hiyama

W. von Witsch, A. Siepe et al., 2002

W. von Witsch, A. Siepe et al. (Bonn)

FIG. 2. Data for n-p QFS, projected onto the E_n axis. The solid line is the finite-geometry Monte Carlo prediction, using CD-Bonn for the N-N interaction.

FIG. 4. HE data of Fig. 3, projected onto the E_{n1} axis. The solid curve represents the finite-geometry Monte Carlo prediction using CD-Bonn, the dotted line is the MC result normalized to the experiment by multiplication with a factor of 1.18. Only events with E_{n1} and $E_{n2} > 6$ MeV have been included in the analysis.

 $E_n=25 \text{ MeV}$

+(Li) 2003

X.C. Ruan (CIAE) & W. von Witsch (Bonn), 2007 China Institute of Atomic Energy

²H(n,nn)p nn-QFS

QFS compared with the theoretical prediction by Monte Carlo simulation based on CD-Bonn. The solid squares show the measured data, and the solid curve is the theoretical prediction, whereas the dotted line gives the theoretical prediction multiplied by a factor of 1.16. The error bars denote the statistical uncertainty only.

n+d = n + n + p

versus

$\gamma + ^{3}H = n + n + p$

Photon induced three-body breakup of ${}^{3}H > n + n + p$

A=2

$\gamma + {}^{2}H$ breakup

Gerasimov-Drell-Hearn Sum Rule on the Deuteron

$$I^{GDH} = \int_{v_{thr}}^{\infty} \frac{d\nu}{\nu} \left[\sigma_N^P(\nu) - \sigma_N^A(\nu) \right] = \frac{4\pi^2 \alpha}{M_N^2} \kappa_N^2 I$$

$$I_p=204.8 \ \mu b$$
 $I_n=232.5 \ \mu b$ $I_d=0.652 \ \mu b$

Above pion production threshold: Large positive value

Below pion production threshold: Large negative value

- HIGS is currently mounting the GDH experiment on the deuteron
- Installation of the HIGS Frozen Spin Target (HIFROST) is ongoing
- The majority of data taking will be completed by the end of 2014 between 4 and 16 MeV

Setup for GDH Measurement on Deuteron

Compton Scattering: A=1, A=2, A=3

Compton Scattering

The T-matrix for the Compton scattering of incoming photon of energy ω with a spin (σ) ½ target is described by six structure functions

$$\begin{split} T(\omega, z) &= A_1(\omega, z)(\vec{\epsilon}'^* \cdot \vec{\epsilon}) + A_2(\omega, z)(\vec{\epsilon}'^* \cdot \hat{\vec{k}})(\vec{\epsilon} \cdot \hat{\vec{k}}') \\ &+ iA_3(\omega, z) \vec{\sigma} \cdot (\vec{\epsilon}'^* \times \vec{\epsilon}) + iA_4(\omega, z) \vec{\sigma} \cdot (\hat{\vec{k}}' \times \hat{\vec{k}})(\vec{\epsilon}'^* \cdot \vec{\epsilon}) \\ &+ iA_5(\omega, z) \vec{\sigma} \cdot [(\vec{\epsilon}'^* \times \hat{\vec{k}}) (\vec{\epsilon} \cdot \hat{\vec{k}}') - (\vec{\epsilon} \times \hat{\vec{k}}') (\vec{\epsilon}'^* \cdot \hat{\vec{k}})] \\ &+ iA_6(\omega, z) \vec{\sigma} \cdot [(\vec{\epsilon}'^* \times \hat{\vec{k}}') (\vec{\epsilon} \cdot \hat{\vec{k}}') - (\vec{\epsilon} \times \hat{\vec{k}}) (\vec{\epsilon}'^* \cdot \hat{\vec{k}})], \end{split}$$

$$\varepsilon$$
 = photon polarization, k is the momentum

H.W. Grießhammer, et al., Progress in Particle and Nuclear Physics (2012), doi:10.1016/j.ppnp.2012.04.003

HIGS Results on ¹⁶O and ⁶Li Compton Scattering

Phenomenological Model

- Giant Resonances
- Quasi-Deuteron
- Modified Thompson

Predictive powers of chiral perturbation theory in Compton scattering off protons Eur. Phys. J. C (2010) 65: 195–209 DOI 10.1140/epjc/s10052-009-1183-z

H.W. Grießhammer, et al., Progress in Particle and Nuclear Physics (2012), doi:10.1016/j.ppnp.2012.04.003 Using Effective Field Theory to analyse low-energy Compton scattering data from protons and light nuclei

H.W. Grießhammer^{a,*}, J.A. McGovern^b, D.R. Phillips^c, G. Feldman^a

Upgrade of HI_yS: HI_yS2

HIγS2 Layout

Major physics drivers

1. $\gamma + {}^{16}O = {}^{12}C + \alpha$ (Holy Grail of Nuclear Astrophysics)

2. $\gamma + d = n + p$ (Parity violation)

Comparison of HI_yS2 to ELI

ELI: Extreme Light Infrastructure Bucharest, Prague, Szeged

Backup slides

A=12

Nuclear Astrophysics

The $2^{nd} 2^+$ state in ${}^{12}C$

Triple- α Process:

M. Hjorth-Jensen, Physics 4, 38 (2011)

Red giant stars

Resonance enhancement is needed. Nature forms ⁸Be (ground state is a resonance 92 keV above the ⁴He-⁴He threshold). Helps, but not sufficient. Hoyle (1954) proposed a resonance in ¹²C just above the combined mass of ⁸Be and α -particle. Observed in 1957.

Nuclear Astrophysics & EFT Lattice Calculations

A 2₂⁺ state in ¹²C was predicted by Morinaga (Phys. Rev. 101, 1956) as the first rotational state of the "ground" state 7.654 MeV (Hoyle State)

Recently, Epelbaum, Krebs, Lee, Meißner (Phys. Rev. Lett. 106, 192501, 2011) have performed *Ab Initio* Chiral Effective Field Theory Lattice calculations for the Hoyle State and its structure and rotations.

Epelbaum *et al*. Phys. Rev. Lett. 109 252501 (2012) Structure of ground state and first 2+

Strong overlap with compact triangle configuration

12 rotational orientations

 $b=1.97~{\rm fm}$

Structure of Hoyle state and second 2+

Strong overlap with bent arm configuration

 $b=1.97~{\rm fm}$

Evidence of $2^{nd} 2^+$ state in ${}^{12}C$

- **Gas (Target/Detector) filled volume (CO_2 + N_2)**
- \Box Grid provides the total energy (Δ E/E of 4 %)
- PMTs provide the Time-Projection (10 ns bins): out-of-plane angle of the track
- Optical Readout provides the track image: in-plane angle of the track

$$\gamma + {}^{12}C > 3\alpha$$

Unambiguous Identification of the Second 2⁺ State in ¹²C and the Structure of the Hoyle State

W. R. Zimmerman,^{1,2} M. W. Ahmed,^{2,3} B. Bromberger,⁴ S. C. Stave,² A. Breskin,⁵ V. Dangendorf,⁴ Th. Delbar,⁶ M. Gai,^{1,7} S. S. Henshaw,² J. M. Mueller,² C. Sun,² K. Tittelmeier,⁴ H. R. Weller,^{1,2} and Y. K. Wu²

Evidence of a New 2₂⁺ State in ¹²C: Results

Comparing the Experimental Results and the lattice EFT Calculation

	E(2 ₂ ⁺ - 0 ₂ ⁺)	B(E2: E(2 ₂ ⁺ → 0 ₁ ⁺)
Experiment	2.37 ± 0.11	0.73 ± 0.13
Theory	2.0 ± 1 to 2	2 ± 1

Nuclear Astrophysics Impact of the 2₂⁺ State

- Helium burning occurs at a temperature of 10⁸–10⁹K, and is completely governed by the Hoyle state;
- However, during type II supernovae, γ -ray bursts and other astrophysical phenomena, the temperature rises well above 10^9 K, and higher energy states in ¹²C can have a significant effect on the triple- α reaction rate;
- Preliminary calculations suggest a dependence of high mass number (>140) abundances on the triple alpha reaction rate based on the parameters of the 2_2^+ state.