Gaussian functional method for chiral mesons in the linear sigma model

Hiroshi Toki

Research Center for Nuclear Physics (RCNP) Osaka University in collaboration with S. Imai (Hokkaido) H.X. Chen (Beihang, China) L.S. Geng (Beihang, China)

Many reasons to study pion and sigma mesons (chiral symmetry)

- 1. Mediator of strong interaction (Yukawa particle)
- 2. Play important role in Nuclear Physics
- 3. Nambu-Goldstone boson of chiral symmetry
- 4. Linear sigma model is a beautiful (simple) Lagrangian
- 5. Sigma meson is a Higgs boson in strong interaction
- 6. Non-linear sigma model is used phenomenologically
- 7. Renewed interest in linear sigma model
- 8. …

Variational calculation of few body system with NN interaction VMC+GFMC -20 V_{π} Ψ ~ 80% ⁶He+2n- $\alpha + 2n^{-1}$ -25 $V_{_{N\!N}}$ $\alpha \pm d$ 0^+ $-\frac{3}{2}$ -30 ⁴He ⁷He ⁶He V_{NNN} ⁸He ⁶Li 7/2--35 Energy (MeV) α+t ^{'7}Li+n -40 ⁷Li ⁸Li -45 Fujita-Miyazawa $\alpha + \alpha$ -50 AV18 Exp IL2 -55 $\Psi = \phi(r_{12})\phi(r_{23})...\phi(r_{ii})$ ⁸Be -60

Relativistic

C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci.51(2001)

Heavy nuclei (Super model)

Pion is key

Linear sigma model

beautiful non-perturbative Lagrangian

$$O(4): \qquad \phi = (\phi_0, \phi_1, \phi_2, \phi_3) = (\sigma, \vec{\pi})$$
$$L = \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi^2)$$
$$V(\phi^2) = -\frac{1}{2} \mu_0^2 \phi^2 + \frac{1}{4} \lambda_0 (\phi^2)^2$$

Gaussian Functional Method

Variational wave function (quantum fluctuation)

$$\begin{split} \Psi_{0}[\phi] &= \mathcal{N} \exp\left(-\frac{1}{4\hbar} \int d\mathbf{x} d\mathbf{y} [\phi_{i}(\mathbf{x}) - \langle \phi_{i}(\mathbf{x}) \rangle] G_{ij}^{-1}(\mathbf{x}, \mathbf{y}) [\phi_{j}(\mathbf{y}) - \langle \phi_{j}(\mathbf{y}) \rangle] \right) \\ G_{ij}(\mathbf{x}, \mathbf{y}) &= \frac{1}{2} \delta_{ij} \int \frac{d^{3} \mathbf{k}}{(2\pi)^{3}} \frac{1}{\sqrt{\mathbf{k}^{2} + M_{i}^{2}}} e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} \\ \mathcal{H} &= \int d\mathbf{y} \delta(\mathbf{y} - \mathbf{x}) \left(-\frac{\hbar^{2}}{2} \frac{\delta^{2}}{\delta \phi_{i}(\mathbf{x}) \phi_{i}(\mathbf{y})} + \frac{1}{2} \nabla_{\mathbf{x}} \phi_{i}(\mathbf{x}) \nabla_{\mathbf{y}} \phi_{i}(\mathbf{y}) + V(\phi^{2}) + \mathcal{H}_{\mathbf{x}SB} \right) \\ p_{i}(\mathbf{x}) &= \frac{\delta L}{\delta \partial_{0} \phi_{i}(\mathbf{x})} \left[p_{i}(\mathbf{x}), \phi_{j}(\mathbf{y}) \right]_{t} = \hbar \delta_{ij} \delta(\mathbf{x} - \mathbf{y}) \\ U\left(\left\langle \phi_{i} \right\rangle, M_{i} \right) &= \left\langle \Psi_{0} \left[\phi \right] |H| \Psi_{0} \left[\phi \right] \right\rangle \quad \int_{-\infty}^{\infty} e^{-ax^{2}} d\mathbf{x} = \sqrt{\frac{\pi}{a}} \\ &= \int_{-\infty}^{\infty} x^{2} e^{-ax^{2}} d\mathbf{x} = -\frac{d}{da} \int_{-\infty}^{\infty} e^{-ax^{2}} d\mathbf{x} = \frac{1}{2a} \sqrt{\frac{\pi}{a}} \end{split}$$

Ground state energy

$$\begin{aligned} U(M_i, \langle \phi_i \rangle) &= -\varepsilon \langle \phi_0 \rangle - \frac{1}{2} \mu_0^2 \langle \phi \rangle^2 + \frac{\lambda_0}{4} [\langle \phi \rangle^2]^2 + \hbar \sum_i [I_1(M_i) - \frac{1}{2} \mu_0^2 I_0(M_i) \\ &- \frac{1}{2} M_i^2 I_0(M_i)] + \frac{\lambda_0}{4} [6\hbar \sum_i \langle \phi_i \rangle^2 I_0(M_i) + 2\hbar \sum_{i \neq j} \langle \phi_i \rangle^2 I_0(M_j) \\ &+ 3\hbar^2 \sum_i I_0^2(M_i) + 2\hbar^2 \sum_{i < j} I_0(M_i) I_0(M_j)] \,, \end{aligned}$$

$$I_0(M_i) = \frac{1}{2} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{1}{\sqrt{\mathbf{k}^2 + M_i^2}} = i \int \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2 - M_i^2 + i\epsilon},$$

$$I_1(M_i) = \frac{1}{2} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \sqrt{\mathbf{k}^2 + M_i^2} = -\frac{i}{2} \int \frac{d^4 k}{(2\pi)^4} \log\left(k^2 - M_i^2 + i\epsilon\right)$$

CJT method

Cornwall Jackiew Tomboulis, Phys. Rev. 10 (1974) 2428

$$Z(J,K) = e^{(i/\hbar)W(J,K)} = \int d\phi \exp\left[\frac{i}{\hbar} \left(\int L(\phi(x)) + \int \phi(x)J(x) + \frac{1}{2} \int \phi(x)K(x,y)\phi(y)\right)\right]$$
$$\frac{\delta W(J,K)}{\delta J(x)} = \langle \phi(x) \rangle = \phi(x) \quad \frac{\delta W(J,K)}{\delta K(x,y)} = \frac{1}{2} [\phi(x)\phi(y) + \hbar G(x,y)]$$

Effective action

$$\Gamma(\varphi,G) = W(J,K) - \int \varphi J - \frac{1}{2} \int \varphi K \varphi - \frac{1}{2} \hbar \int GK = -U(\varphi,G) \int d^4x$$

(Hartree-Fock method for bosons)

Effective potential

Optimized expansion method

OE method : Okopinska, Ann. Phys. 228 (1993) 19: Phys. Lett. B375 (1996) 213

$$S[\phi,G] = S^{(0)}[\phi,G] + \varepsilon S^{(1)}[\phi,G]$$

= $\int \frac{1}{2}\phi(x)G^{-1}(x,y)\phi(y) + \varepsilon \left[\int \frac{1}{2}\phi(x)[(-\partial^2 + \mu^2) - G^{-1}(x,y)]\phi(y) + \int \frac{\lambda}{4}(\phi^2(x))^2\right]$
 $\mathcal{E} = 1$
 $\phi(x) = \phi'(x) + \phi$

$$S[\phi' + \varphi, G] = S[\varphi, G] + \int \frac{1}{2} \phi' G^{-1} \phi' + \varepsilon \left[\int \frac{1}{2} \frac{\partial^2 S^{(1)}}{\partial \varphi^2} \phi'^2 + \frac{1}{3!} \frac{\partial^3 S^{(1)}}{\partial \varphi^3} \phi'^3 + \frac{1}{4!} \frac{\partial^4 S^{(1)}}{\partial \varphi^4} \phi'^4 \right]$$

$$Z[\varphi,G] = e^{-S[\varphi,G]} \int d\phi' \exp\left[-\int \frac{1}{2}\phi' G^{-1}\phi'\right] \left[1 - \varepsilon \left(\frac{1}{2}\frac{\partial^2 S^{(1)}}{\partial \varphi^2}\phi'^2 + \frac{1}{3!}\frac{\partial^3 S^{(1)}}{\partial \varphi^3}\phi'^3 + \frac{1}{4!}\frac{\partial^4 S^{(1)}}{\partial \varphi^4}\phi'^4\right) + O(\varepsilon^2)\right]$$

 $\Gamma[\varphi,G] = -U[\varphi,G] \int d^4x$ Effective potential

Optimized expansion method for fermion and boson (Gellmann-Levy Lagrangian) $L = \overline{\psi} \left(i \gamma_{\mu} \partial^{\mu} - m - g \sigma - g i \gamma_{5} \vec{\tau} \vec{\pi} \right) \psi + (Meson)$ $S_{E}(\phi, \psi) = S_{E}^{(0)}(M, \psi) + \varepsilon S_{E}^{(1)}(\phi, \psi)$ $=\int \overline{\psi}(i\gamma_u-M)\psi+\varepsilon\int \overline{\psi}(M-m-g\sigma-gi\gamma_5\vec{\tau}\vec{\pi})\psi$ $U_{FB}(\varphi, G, G_F) = U(\varphi, G) - Tr \int \ln G_F^{-1}(M) + [m - M + g\varphi] Tr \int G_F$ $-\frac{1}{2}g^2Tr\int G_F(M)G_F(M)G(M_i)$

Gaussian functional method

Energy minimization

Simplification

$$M_{\sigma}^{2} = \frac{\varepsilon}{v} + 2\lambda_{0}v^{2}, \qquad M_{\pi} \neq M_{\sigma}$$

$$M_{\pi}^{2} = \frac{\varepsilon}{v} + 2\lambda_{0}\hbar [I_{0}(M_{\pi}) - I_{0}(M_{\sigma})]$$
Pion mass is not zero

Nambu-Goldstone theorem is not fulfilled.

Bethe-Salpeter equation

$$V_{\sigma\pi\to\sigma\pi}(s) = 2\lambda_0 \left[1 + \left(\frac{2\lambda_0 v^2}{s - M_\pi^2}\right) \right]$$
Physical meson mass
$$m_i^2 = \frac{\delta^2 U[\varphi, G]}{\delta \varphi_i^2}$$
$$T_{\sigma\pi\to\sigma\pi}(s) = V_{\sigma\pi\to\sigma\pi}(s) + V_{\sigma\pi\to\sigma\pi}(s)G_{\sigma\pi\to\sigma\pi}(s)T_{\sigma\pi\to\sigma\pi}(s)$$
$$T = V + V + T$$
Pole condition
$$1 - V(s)G(s) = 0$$
$$T_{\sigma\pi\to\sigma\pi}(s) = \frac{V_{\sigma\pi\to\sigma\pi}(s)}{1 - V_{\sigma\pi\to\sigma\pi}(s)G_{\sigma\pi\to\sigma\pi}(s)}$$
$$s = m_i^2$$

Nambu-Goldstone theorem

$$G_{\sigma\pi\to\sigma\pi}(p^2) = i\hbar \int \frac{d^4k}{(2\pi)^4} \frac{1}{[k^2 - M_{\sigma}^2 + i\epsilon] [(k-p)^2 - M_{\pi}^2 + i\epsilon]}$$

$$G_{\sigma\pi\to\sigma\pi}(s,T) \xrightarrow{s\to 0} \frac{I_0(M_{\sigma}^2,T) - I_0(M_{\pi}^2,T)}{M_{\sigma}^2 - M_{\pi}^2}$$

$$1 - VG(s = 0) = 1 - 2\lambda_0 \left(1 - \frac{2\lambda_0 v^2}{M_\pi^2}\right) \frac{I_0(M_\sigma) - I_0(M_\pi)}{M_\sigma^2 - M_\pi^2}$$
$$= 1 + \left(1 - \frac{M_\sigma^2}{M_\pi^2}\right) \frac{M_\pi^2}{M_\sigma^2 - M_\pi^2} = 0$$

HF+RPA remove the center of mass motionGF+BS recover the Nambu-Goldstone theorem

Linear σ model from quark-gluon dynamics Kondo, Phys. Rev. D84 (2011) 061702 $L_{QCD} = \overline{\psi} \left(i \gamma_{\mu} D^{\mu} - m \right) \psi + \frac{1}{\Lambda} F^{a}_{\mu\nu} F^{a\mu\nu}$ $A_{\mu}(x) = V_{\mu}(x) + \chi_{\mu}(x)$ Cho-Fadeev-Niemi variable $V_{\mu}(x) = c_{\mu}(x)\vec{n}(x) + ig^{-1}[\vec{n}(x),\partial_{\mu}\vec{n}(x)]$ $\chi_{\mu}(x) = ig^{-1}[D_{\mu}[A]\vec{n}(x),\vec{n}(x)]$ (High energy mode) $d\chi$ $L_{OCD} \rightarrow L_{DGL+NJL}(V, \psi) \quad (\mid p \mid < \Lambda)$ bosonization $\int dV \, d\overline{\psi} \, d\psi$ Low energy effective theory $\Lambda \sim 1 GeV$ $L_{\sigma}[\phi_{meson}, \Psi_{fermion}] \quad (\mid p \mid < \Lambda)$ Mesons and Fermions are composite

Results @ Gaussian functional method

Goldstone boson has finite mass!!

Numerical results @ BS method

Sigma meson is 4 quark state

Finite pion mass

 $m_{\sigma}(T=0) = 500 \,\mathrm{MeV}\,,$ Λ $= 800 \,\mathrm{MeV}$.

 λ_0

 μ_0

=

 $m_{\pi}(T=0) = 138 \,\mathrm{MeV}$. 17

Sigma meson is 4 quark state

PHYSICAL REVIEW D 81, 114034 (2010) Light scalar meson $\sigma(600)$ in QCD sum rule with continuum

Hua-Xing Chen,^{1,2,*} Atsushi Hosaka,^{2,†} Hiroshi Toki,^{2,‡} and Shi-Lin Zhu^{1,§}

two quark current $J_2 = \overline{q}q$ higher than 1GeV four quark current $J_4 = (\overline{q}q)^2$ lower than 1GeV

 $\sigma(600) \sim 530 MeV \pm 40 MeV$ $\Gamma_{1/2} \sim 200 MeV$

Finite temperature

First order phase transition vs. second order

Explicit symmetry breaking case at finite temperature

First order phase transition

Very similar to the case of non-linear sigma model

Order of phase transition O(4) linear sigma model should be second order Oqure Sato, Prog. Theo. Phys. 102 (1999) 209 30x10⁻³ General discussion on phase transition 20 but $\Pi_{\sigma} = \frac{\partial^2 V(\sigma, \pi)}{\partial \sigma^2} \quad \text{assumption is made}$ // μ⁴ $\Pi_{\pi} = \frac{1}{\sigma} \frac{\partial V(\sigma, \pi)}{\partial \sigma}$ Pilaftsis Teresi, Nucl. Phys. B874 (2013) 594 0.0 2.0 2.5 0.5 1.0 1.5 3.0 φ/μ Symmetry improved 100 T=430 GeV CJT method 50 Re $\tilde{V}_{
m eff}$ [10⁴GeV⁴] $\varphi M_{\pi}^2 = 0$ T=420 GeV instead of $\frac{\partial V(\varphi)}{\partial \varphi} = 0$ T=410 GeV -100 $\lambda = 0.129$ m = 125 GeV-150'=400 GeV 21 60 80 120 20 100 140

Conclusion

- •GF+BS approximation is used for linear sigma model (low energy effective theory) -correspond to HF+RPA in nuclear physics
- •Sigma meson has 4 quark structure
- Phase transition is first order
 - -'general' discussion leads to second order
- •Want to relate to the non-linear sigma model Pion cloud: $N = e^{\frac{1}{2}i\gamma_5 \tau \cdot \pi/f_\pi} \psi$

Finite temperature (Nuclear Physics) with pions

Finite temperature

$$Z = \int d\phi(x) e^{i \int d^4 x \, L(\phi(x))}$$

$$\Gamma[\varphi, G] = -U[\varphi, G] \int d^4 x \qquad i \int \frac{d^4 k}{(2\pi)^4} \to -T \sum_n \int \frac{d^3 k}{(2\pi)^3}$$

$$U(\varphi, G:T) \qquad m(T)^2 = \frac{d^2 U(\varphi, G:T)}{d\varphi^2}$$

We do not use the zero mass pion in thermodynamics

Second quantization

$$Z_J = \int d\phi(x) d\phi(x) e^{i \int d^4 x \left[L(\phi) + J(x)(\phi(x) - \phi(x)) \right]}$$