Energy-momentum Tensor Form Factors and Transverse Charge Densities of the Pion and the Kaon from the Instanton Vacuum

Hyeon-Dong Son Inha University In collaboration with Prof. H.-Ch. Kim

APFB 2014 April 7-11, 2014 in Hahndorf, SA, Australia

Outline

- Motivation
- Energy momentum tensor form factors & Transverse Charge Densities
- Nonlocal chiral quark model from the Instanton Vacuum
- Numerical Result
- Summary

Motivation

- The internal structure of hadrons
- Generalized Parton Distributions(GPDs)
- Generalized Form Factors(GFFs)A10, A20, B10, B20...
- Energy-momentum tensor form factors
- Transverse Charge Densities(TChDs)
 - : Spatial distribution at the transverse momentum plane
- SU(3) symmetry breaking in the mesonic sector: pi, K
- Reliability of a model: Low-energy theorem

Generalized Form Factors

$$\begin{split} \psi^{\dagger}(x - \frac{\epsilon}{2})\gamma_{\mu}\psi(x + \frac{\epsilon}{2}) & [\text{R.L. Jaffe, arXiv:hep-ph/9602236}] \\ &= \psi^{\dagger}(x)\gamma_{\mu}\psi(x) + \epsilon_{\nu}\psi^{\dagger}(x)\frac{1}{2}(\gamma_{\mu}\overrightarrow{\partial}_{\nu} - \gamma_{\mu}\overleftarrow{\partial}_{\nu})\psi(x) + \dots \\ &\equiv J_{\mu}(x) + \epsilon_{\nu}\Theta_{\mu\nu}(x) + \dots \end{split}$$

The Hadronic Matrix elements of each operator define the generalized form factors.

Generalized Form Factors

$$\langle \phi^a(p_f) | \psi^{\dagger}(0) \gamma_{\{\mu} i \overleftrightarrow{D}_{\mu_1} \dots \overleftrightarrow{D}_{\mu_{n-1}\}} \psi(0) | \phi^b(p_i) \rangle$$

$$= 2P_{\{\mu}P_{\mu_{1}}...P_{\mu_{n-1}\}}A_{n0}(t) + \sum_{k=2 \ even}^{n} q_{\{\mu}q_{\mu_{1}}...q_{\mu_{k-1}}P_{\mu_{k}}P_{\mu_{n-1}\}}2^{-k}A_{nk}(t)$$

$$\langle \phi(p_f) | \psi^{\dagger}(0) \sigma_{[\mu\nu} i \overleftrightarrow{D}_{\mu_1} \dots i \overleftrightarrow{D}_{\mu_{n-1}]} \psi(0) | \phi(p_i) \rangle$$

$$=\frac{p_{[\mu}q_{\nu}-q_{\mu}p_{\nu}}{m_{\phi}}\sum_{i=even}^{n-1}q_{\mu_{1}}...q_{\mu_{i}}P_{\mu_{i+1}}P_{\mu_{n-1}}B_{ni}(t)$$

$$(\overleftarrow{D}_{\mu} = \frac{1}{2}(\overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu}), P_{\mu} = (p_i + p_f)_{\mu}, q_{\mu} = (p_f - p_i)_{\mu}, t = -q^2)$$

n=1
$$2P_{\mu}A_{10}(t)$$

n=2 $2P_{\{\mu}P_{\nu\}}A_{20}(t) + \frac{1}{2}q_{\{\mu}q_{\nu\}}A_{22}(t)$

n=2: Energy-momentum Tensor Form Factors

- H.Pagels: Energy-Momentum Structure Form Factors of Particles (Phys.Rev.144,1250.,1966)
- Momentum distribution of the partons inside of hadrons
- Accessible from the vector GPDs by using the polynomiality

$$\int_{-1}^{1} dx x H(x,t,\xi) = 2A_{20}(t) + 2A_{22}(t)\xi^2$$

Lattice calculation:

POS(LAT2005)360 D. Brommel et al(2005) PhD Thesis, D. Brommel(2007) PRL.101,122011 D. Brommel et al(2008) (QCDSF-UKQCD Collaborations)

n=2: Energy-momentum Tensor Form Factors

 $\langle \phi^a(p_f) | \Theta_{\mu
u}(0) | \phi^b(p_i) \rangle$ [H.Pagels ,Phys.Rev.144,1250.,1966]

$$=\frac{\delta^{ab}}{2}\left[(q^2\delta_{\mu\nu}-q_{\mu}q_{\nu})\Theta_1(t)+4P_{\mu}P_{\nu}\Theta_2(t)\right]$$

$$\Theta_2(t) = 2A_{20}(t)$$
$$\Theta_1(t) = -2A_{22}(t)$$

 $\Theta_2(0) = 1$ $\Theta_1(0) - \Theta_2(0) = \mathcal{O}(m_\pi^2)$ [J.F. Donoghue and H. Leutwyler, Z.Phys.C(1991) 52, 343]

P-pole parametrization

$$A_{20}(t) = \frac{A_{20}(0)}{(1 - \frac{t}{pM^2})^p}$$

Transverse charge density

$$egin{aligned} A_{n0}(b_{\perp}) &= rac{1}{(2\pi)^2} \int d^2 q_{\perp} \; e^{-ib_{\perp} \cdot q_{\perp}} A_{n0}(q_{\perp}^2) \ &= rac{1}{2\pi} \int_0^\infty Q dQ J_0(b_{\perp}Q) A_{n0}(Q^2) \end{aligned}$$

Polarized quark spin structure

$$\rho_n^{\phi}(b_{\perp}, s_{\perp}) = \frac{1}{2} \left[A_{n0}^{\phi}(b_{\perp}^2) - \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m_{\phi}} \frac{\partial B_{n0}^{\phi}(b_{\perp}^2)}{\partial b_{\perp}^2} \right]$$

P-pole parametrization

$$A_{20}(t) = \frac{A_{20}(0)}{(1 - \frac{t}{pM^2})^p}$$

Transverse charge density

$$egin{aligned} A_{n0}(b_{\perp}) &= rac{1}{(2\pi)^2} \int d^2 q_{\perp} \; e^{-ib_{\perp} \cdot q_{\perp}} A_{n0}(q_{\perp}^2) \ &= rac{1}{2\pi} \int_0^\infty Q dQ J_0(b_{\perp}Q) A_{n0}(Q^2) \ &= \end{aligned}$$

$$\frac{2^{-p}b_{\perp}^{-1+p}(\sqrt{M^2p})^{p+1}K_{1-p}(b_{\perp}Mp)}{\pi\Gamma(p)}$$

Logarithmically divergent
at b=0 for p=1.
Singular when p<1.5

Polarized quark spin structure

$$\rho_n^{\phi}(b_{\perp}, s_{\perp}) = \frac{1}{2} \left[A_{n0}^{\phi}(b_{\perp}^2) - \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m_{\phi}} \frac{\partial B_{n0}^{\phi}(b_{\perp}^2)}{\partial b_{\perp}^2} \right]$$

P-pole parametrization

$$A_{20}(t) = \frac{A_{20}(0)}{(1 - \frac{t}{pM^2})^p}$$

Transverse charge density

$$egin{aligned} A_{n0}(b_{\perp}) &= rac{1}{(2\pi)^2} \int d^2 q_{\perp} \; e^{-ib_{\perp} \cdot q_{\perp}} A_{n0}(q_{\perp}^2) \ &= rac{1}{2\pi} \int_0^\infty Q dQ J_0(b_{\perp}Q) A_{n0}(Q^2) \ . \end{aligned}$$

$$\frac{2^{-p}b_{\perp}^{-1+p}(\sqrt{M^2p})^{p+1}K_{1-p}(b_{\perp}Mp)}{\pi\Gamma(p)}$$

Logarithmically divergent at b=0 for p=1. Singular when p<1.5

p=1 for Ano, p=1.6 for Bno

Polarized quark spin structure

$$\rho_n^{\phi}(b_{\perp}, s_{\perp}) = \frac{1}{2} \left[A_{n0}^{\phi}(b_{\perp}^2) - \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m_{\phi}} \frac{\partial B_{n0}^{\phi}(b_{\perp}^2)}{\partial b_{\perp}^2} \right]$$

P-pole parametrization

$$A_{20}(t) = \frac{A_{20}(0)}{(1 - \frac{t}{pM^2})^p}$$

Transverse charge density

$$egin{aligned} A_{n0}(b_{\perp}) &= rac{1}{(2\pi)^2} \int d^2 q_{\perp} \; e^{-ib_{\perp} \cdot q_{\perp}} A_{n0}(q_{\perp}^2) \ &= rac{1}{2\pi} \int_0^\infty Q dQ J_0(b_{\perp}Q) A_{n0}(Q^2) \end{aligned}$$

Polarized quark spin structure

$$\rho_n^{\phi}(b_{\perp}, s_{\perp}) = \frac{1}{2} \left[A_{n0}^{\phi}(b_{\perp}^2) - \frac{s_{\perp}^i \epsilon^{ij} b_{\perp}^j}{m_{\phi}} \frac{\partial B_{n0}^{\phi}(b_{\perp}^2)}{\partial b_{\perp}^2} \right]$$

Spatial distribution of the quark polarized in the transverse plane inside the pion and the kaon.

Nonlocal Chiral Quark Model From the Instanton Vacuum

 $U^{\gamma_5} = \exp\left|rac{i\gamma_5}{f_{\phi}}(\lambda \cdot \phi)
ight|$

$$S_{\text{eff}} = -N_c \text{Tr} \log \left[i \partial \!\!\!/ + i \hat{m} + i \sqrt{M(i\partial)} U^{\gamma_5} \sqrt{M(i\partial)} \right]$$

- The chiral effective action derived from the instanton vacuum
- No free parameter

-Average Instanton size & separation $\bar{\rho} \approx \frac{1}{3} \text{ fm } \bar{\text{R}} \approx 1 \text{ fm}$

- Nonlocality
 - -Momentum-dependent dynamical quark mass
- Nicely reproduces pion properties: Fpi, EMFF
- SU(3) symmetry breaking

 $\hat{m} = \text{diag}(m_u, m_d, m_s) \quad m_u = m_d = 5 \text{ [MeV]} \quad m_s = 180 \text{ [MeV]}$

[D. Diakonov, Instantons at work, arXiv:hep-ph/0212026v4]

Nonlocal Chiral Quark Model & Gauge Invariance

- The gauge invariance is broken by the nonlocal interaction of the model
- The ordinary Noether currents are not conserved due to the broken gauge invariance
- The gauge invariance is restored: The conserved vector current

$$J_{\mu} = \psi^{\dagger} (\gamma_{\mu} + i \frac{\partial \sqrt{M}}{\partial \hat{p}_{\mu}} U^{\gamma_{5}} \sqrt{M} - i \sqrt{M} U^{\gamma_{5}} \frac{\partial \sqrt{M}}{\partial \hat{p}_{\mu}}) \psi$$

[M.M. Musakhanov and H.-Ch. Kim, Phys. Lett. B572(2003)]

Energy-momentum Tensor Operator for the Nonlocal Chiral Quark Model

$$\Gamma_{\mu} = \gamma_{\mu} + i \frac{\partial \sqrt{M}}{\partial \hat{p}_{\mu}} U^{\gamma_5} \sqrt{M} - i \sqrt{M} U^{\gamma_5} \frac{\partial \sqrt{M}}{\partial \hat{p}_{\mu}}$$

$$\psi^{\dagger}(x-\frac{\epsilon}{2})\Gamma_{\mu}\psi(x+\frac{\epsilon}{2}) = \hat{\Gamma}(x)_{\mu} + \epsilon_{\nu}\hat{\Theta}(x)_{\mu\nu} + \dots$$

$$\begin{split} \hat{\Theta}(x)_{\mu\nu} &= \frac{i}{4} \psi^{\dagger}(x) \left[\gamma_{\mu} \overrightarrow{\partial}_{\nu} - \gamma_{\mu} \overleftarrow{\partial}_{\nu} \right. \\ &+ i \frac{\partial \sqrt{M}}{\partial \hat{p}_{\mu}} U^{\gamma_{5}} \sqrt{M} \overrightarrow{\partial}_{\nu} - i \sqrt{M} U^{\gamma_{5}} \frac{\partial \sqrt{M}}{\partial \hat{p}_{\mu}} \overrightarrow{\partial}_{\nu} \\ &- i \overleftarrow{\partial}_{\nu} \frac{\partial \sqrt{M}}{\partial \hat{p}_{\mu}} U^{\gamma_{5}} \sqrt{M} + i \overrightarrow{\partial}_{\nu} \sqrt{M} U^{\gamma_{5}} \frac{\partial \sqrt{M}}{\partial \hat{p}_{\mu}} \right] \psi(x) \end{split}$$

Calculation of the matrix element

 $\langle \phi^a(p_f) | \hat{\Theta}_{\mu\nu}(0) | \phi^b(p_i) \rangle$

Pion Form Factors

Pion Form Factors

A10 (EM) [S.-i.Nam & H.-Ch.Kim Phys.Rev.D77(2008),094014]

	Local	Nonlocal	Total	Exp. [61]
$\langle r^2 \rangle_{\pi^+}^{1/2}$ [fm]	0.594	0.319	0.675	0.672 ± 0.008
$\langle r^2 \rangle_{K^+}^{\Gamma/2}$ [fm]	0.658	0.318	0.731	0.560 ± 0.031

A20 (present work)

$m_{\pi}[\text{MeV}]$	$f_{\pi}[\text{MeV}]$	$\sqrt{\langle r^2 \rangle}$ [fm	n] p	$M_{\pi}[\text{GeV}]$
140	92.4	0.337	1	1.01

Kaon Form Factors

Kaon Form Factors

Transverse Charge Densities of the Pion

Transverse Charge Densities of the Pion

Transverse Charge Densities of the Kaon

Quark Spin Structure

$ ho_n^\phi(b_{})$	$(\bot, s_{\bot}) = \frac{1}{2}$	$\left[A_{n0}^{\phi}(b)\right]$	$\left(\frac{s_{\perp}^{i}\epsilon^{ij}l}{m_{\phi}}\right) - \frac{s_{\perp}^{i}\epsilon^{ij}l}{m_{\phi}}$	$\left[rac{b^j_\perp}{\partial B^\phi_{n0}(b^2_\perp)} rac{\partial B^\phi_{n0}(b^2_\perp)}{\partial b^2_\perp} ight]$	$\langle b_y^{\phi,f}\rangle =$	$rac{\int d^2 b_\perp b_y ho_n^{\phi,f}(b_\perp)}{\int d^2 b_\perp ho_n^{\phi,f}(b_\perp)}$	$\left(egin{smallmatrix} b_{\perp}, s_{\perp} \end{pmatrix} \ = rac{1}{2m}$	$\frac{B_{n0}^{\phi,f}(0)}{A_{n0}^{\phi,f}(0)}$
			s=(1,0)) [Si.Nam	& H.–Ch.K	im Phys.Lett.B7(07(2012),546	 -
	$ ho_n^{\pi,u}$	n=1	$A_{10}^{\pi,u}(0)$	$M_{A_{10}^{\pi,u}}[\text{GeV}]$	$B_{10}^{\pi,u}(0)$	$M_{B_{10}^{\pi,u}}[\text{GeV}]$	$\langle b_y^{\pi,u} angle [ext{fm}]$	
			1	0.748	0.244	0.761	0.172	
		n=2	$A_{20}^{\pi,u}(0)$	$M_{A_{20}^{\pi,u}}[\text{GeV}]$	$B_{20}^{\pi,u}(0)$	$M_{B_{20}^{\pi,u}}[{ m GeV}]$	$\langle b_y^{\pi,u} \rangle$ [fm]	
			0.5	1.01	0.049	0.864	0.069	
	$ ho_n^{K,u}$	n=1	$A_{10}^{K,u}(0)$	$M_{A_{10}^{K,u}}[{\rm GeV}]$	$B_{10}^{K,u}(0)$	$M_{B_{10}^{K,u}}[{\rm GeV}]$	$\langle b_y^{K,u}\rangle [{\rm fm}]$	
			1.045	0.647	0.880	0.726	0.168	-
		n=2	$A_{20}^{K,u}(0)$	$M_{A_{20}^{K,u}}[\text{GeV}]$	$B_{20}^{K,u}(0)$	$M_{B_{20}^{K,u}}[\text{GeV}]$	$\langle b_y^{K,u} \rangle [{\rm fm}]$	
			0.5	0.919	0.199	0.748	0.080	:
	$\rho_n^{K,s}$	n=1	$A_{10}^{K,s}(0)$	$M_{A_{10}^{K,s}}[\text{GeV}]$	$B_{10}^{K,s}(0)$	$M_{B_{10}^{K,s}}[{\rm GeV}]$	$\langle b_y^{K,s} \rangle [{ m fm}]$	-
			-0.909	0.772	-0.760	0.709	0.166	-
		n=2	$A_{20}^{K,s}(0)$	$M_{A_{20}^{K,s}}[\text{GeV}]$	$B_{20}^{K,s}(0)$	$M_{B_{20}^{K,s}}[\text{GeV}]$	$\langle \overline{b_y^{K,s}} \rangle$ [fm]	-
			0.5	0.985	-0.143	0.806	-0.057	

Quark Spin Structure of the Pion

Quark Spin Structure of the Kaon

Quark Spin Structure of the Kaon

Summary and outlook

- Generalized FFs A20 of the pion and the kaon have been studied.
- Transverse charge density
 Singular behavior at the center
- \bigcirc n=2 distribution is narrower than n=1.
- A22 is under way.
- Generalized form factors with higher n (n=3, n=4) are under investigation.

Thank you very much!

Calculation of the matrix element

$$\langle \phi^a(p_f) | \hat{\Theta}_{\mu\nu}(0) | \phi^b(p_i) \rangle = \delta^{ab} \frac{2N_c}{f_{\phi}^2} \int \frac{d^4k}{(2\pi)^4} \sum_i \mathcal{F}_i(k, p_i, p_f)_{\mu\nu} + (\mu \leftrightarrow \nu)$$

$$\mathcal{F}_{a,\mu\nu} = \frac{\sqrt{M_b M_c}}{(k_b^2 + \bar{M}_b^2)(k_c^2 + \bar{M}_c^2)} (\bar{M}_b k_{c\mu} + \bar{M}_c k_{b\mu})(k_{b\nu} + k_{c\nu})$$

$$\mathcal{F}_{b,\mu\nu} = \frac{2M_a\sqrt{M_bM_c}}{(k_a^2 + \bar{M}_a^2)(k_b^2 + \bar{M}_b^2)(k_c^2 + \bar{M}_c^2)} (-k_{a\mu}(k_b \cdot k_c + \bar{M}_b\bar{M}_c) +k_{b\mu}(k_c \cdot k_a + \bar{M}_c\bar{M}_a) + k_{c\mu}(k_a \cdot k_b + \bar{M}_a\bar{M}_b))(k_{b\nu} + k_{c\nu}) \mathcal{F}_{c,\mu\nu} = \frac{\sqrt{M_aM_c}(k_a \cdot k_c + \bar{M}_a\bar{M}_c)}{(k_a^2 + \bar{M}_a^2)(k_c^2 + \bar{M}_c^2)} (\sqrt{M_a}_{\mu}\sqrt{M_b} - \sqrt{M_a}\sqrt{M_b}_{\mu}) \mathcal{F}_{d,\mu\nu} = \frac{\sqrt{M_aM_b}(k_a \cdot k_b + \bar{M}_a\bar{M}_b)}{(k_a^2 + \bar{M}_a^2)(k_b^2 + \bar{M}_b^2)} (\sqrt{M_a}_{\mu}\sqrt{M_c} - \sqrt{M_a}\sqrt{M_c}_{\mu})$$

Nonlocal Chiral Quark Model From the Instanton Vacuum

The Dynamical Quark Mass and the Form-factors

$$\sqrt{M(i\partial)} = \sqrt{M_0 f(m) F^2(i\partial)}$$

Instanton Model $\Lambda = 1/\bar{\rho}$ $F(k) = \frac{k}{\Lambda} \left[I_0(\frac{k}{2\Lambda}) K_1(\frac{k}{2\Lambda}) - I_1(\frac{k}{2\Lambda}) K_0(\frac{k}{2\Lambda}) - \frac{2\Lambda}{k} I_1(\frac{k}{2\Lambda}) K_1(\frac{k}{2\Lambda}) \right]$

Nonlocal Chiral Quark Model From the Instanton Vacuum

The Dynamical Quark Mass and the Form-factors

$$\sqrt{M(i\partial)} = \sqrt{M_0 f(m) F^2(i\partial)}$$

Current quark mass correction f(m) Zero-momentum dynamical quark mass M0 $f(m) = \sqrt{1 + \frac{m^2}{d^2}} - \frac{m}{d}, d \approx 198 MeV$ $M_0 \approx 350 MeV$

[M. Musakhanov Eur.Phys.J.C9,235(1999)]

Pion decay constant

$$f_{\pi} = 0.0924 \text{GeV}$$

Calculation of the matrix element

The Quark-Pseudoscalar meson interactions

$$\mathcal{L}_{int} = -i\psi^{\dagger} i\sqrt{M(\hat{p})} U^{\gamma_5} \sqrt{M(\hat{p})} \psi$$

$$U^{\gamma_5} = \exp[i\frac{\gamma_5}{f_\phi}(\lambda\cdot\phi)] = 1 + i\frac{\gamma_5}{f_\phi}(\lambda\cdot\phi) - \frac{1}{2f_\phi^2}(\lambda\cdot\phi)^2 + \dots$$

Quark Spin Structure of the Pion

Quark Spin Structure of the Kaon

Quark Spin Structure of the Kaon

