Short Range Correlations in Few Body Systems

Patricia Solvignon UNH/JLab

6th Asia Pacific Few Body Conference Handorf, Australia April 7-11, 2014

Introduction to short-range correlations

New results from Jefferson Lab

Future measurements

Summary

Nuclear Potential

Nuclear Potential

Momentum distribution

n(k) for k>k_{fermi} exhibits the same shape for all nuclei

Patricia Solvignon

PSHIRE

similar shape to deuteron: NN interaction is isospin dependent

Jefferson Lab 5

Short-Range Correlations

At $x \approx 1$: Quasi-Elastic Scattering

→ Motion of nucleon in the nucleus broadens the peak.
→ little strength from QE above x ≈ 1.3

PSHIRE

For
$$x \ge 1.3$$
:
 $\sigma_A(x,Q^2) = \sum_{j=2}^A \frac{A}{j} a_j(A) \sigma_j(x,Q^2)$
 $= \frac{A}{2} a_2(A) \sigma_2(x,Q^2) + \frac{A}{3} a_3(A) \sigma_3(x,Q^2) + \dots$

 $\sigma_j \rightarrow cross \ section \ from \ a \ j-nucleon$ correlation

 $a_j(A) \propto$ probability of finding a nucleon in a j-nucleon correlation

Ratio in plateau, proportional to the number of 2N SRCs

> $a_2(^{3}He)=1.7\pm0.3$ $a_2(^{4}He)=3.3\pm0.5$ $a_2(^{12}C)=5.0\pm0.5$ $a_2(^{27}Al)=5.3\pm0.6$ $a_2(^{56}Fe)=5.2\pm0.9$

Evidence of 2N-SRC at x>1.5

of New Hampshire

Ratio in plateau, proportional to the number of 2N SRCs

> a₂(3He)=1.7±0.3 a₂(4He)=3.3±0.5 a₂(¹²C)=5.0±0.5 a₂(²⁷Al)=5.3±0.6 a₂(56Fe)=5.2±0.9

> > Saturation

Evidence of 2N-SRC at x>1.5

of New Hampshire

Dominance of np pairs in SRC region leads us to drop the isoscalar correction. We correct for COM motion of pair.

PSHIRE

Α

³He

⁴He

Be

C

Au

 $\langle Q^2 \rangle$

 x_{\min}

 α_{\min}

Hall C

Jefferson Lab 10

Evidence of 2N-SRC at x>1.5

Hall B

Hall C

of New Hampshire

Hall B

Hall C

of New Hampshire

Hall B

Hall C

of New Hampshire

Hall B

Hall C

of NEW HAMPSHIRE

Patricia Solvignon

Jefferson Lab 14

SRC: isospin dependence

Simple SRC model assumes isospin independence

Data show large asymmetry between np, pp pairs:

Qualitative agreement with calculations; effect of tensor force. Huge violation of often assumed isospin symmetry

Jefferson Lab

15

Patricia Solvignon

New Hampshire

New results from Jefferson Lab

JLab experiment E08-014

Patricia Solvignon

Spokespeople: P. Solvignon, J. Arrington, D. Day, D. Higinbotham **Ph.D student**: Zhihong Ye

Jefferson Lab

17

Verify and define scaling regime for 3N-SRC

Isospin effects on SRCs: ⁴⁸Ca vs. ⁴⁰Ca

MPSHIRE

E08-014 result: ¹²C/D

SLAC: a₂(¹²C)=5.0±0.5

of New Hampshire

Good agreement between the three experiments in the 2N-SRC region

3N-SRC region: very sensitive to acceptance edge effect and window contribution so no conclusion yet

of New Hampshire

Good agreement between the three experiments in the 2N-SRC region

3N-SRC region: very sensitive to acceptance edge effect and window contribution so no conclusion yet

of New Hampshire

Good agreement between the three experiments in the 2N-SRC region

3N-SRC region: very sensitive to acceptance edge effect and window contribution so **no conclusion yet**

New Hampshire

Advantages of this ratio:

- 1) less sensitive to the window contribution
- 2) ⁴He cross section doesn't go to zero at x=3
- 3) CM motion of the 3N mainly cancels in the ratio

But still no sign of a 3N-SRC plateau !

Isolating 3N-SRCs

MPSHIRE

Isospin study from ⁴⁸Ca/⁴⁰Ca ratio

Patricia Solvignon

Theoretical predictions:

M. Vanhalst, J. Ryckebusch and W. Cosyn, PRC86, 044619 (2012)

"correlation operators generate the correlated part of the nuclear WF from that part of the mean-field WF where two nucleons are sufficiently close."

Jefferson Lab 24

JLab experiment E07-006

Approaching the nucleon-nucleon short-range repulsive core via the ${}^{4}\text{He}(e,e'pN)$ triple-coincidence reaction.

I. Korover,¹ N. Muangma,² O. Hen,¹ R. Shneor,¹ V. Sulkosky,^{2,3} A. Kelleher,² S. Gilad,² D.W. Higinbotham,⁴ E. Piasetzky,¹ J. Watson,⁵ S. Wood,⁴ Abdurahim Rakhman,⁶ P. Aguilera,⁷ Z. Ahmed,⁶ H. Albataineh,⁸ K. Allada,⁹ B.

Spokespeople: S. Gilad, D. Higinbotham, V. Sulkosky, E. Piasetzky, J. Watson, S. Wood *He***Ph.D students**: O. Hen, I. Korover, N. Muangma

MPSHIRE

E07-006 results

Jefferson Lab

26

Approaching the nucleon-nucleon short-range repulsive core via the ${}^4\mathrm{He}(e,e'pN)$ triple-coincidence reaction.

I. Korover,¹ N. Muangma,² O. Hen,¹ R. Shneor,¹ V. Sulkosky,^{2,3} A. Kelleher,² S. Gilad,² D.W. Higinbotham,⁴ E. Piasetzky,¹ J. Watson,⁵ S. Wood,⁴ Abdurahim Rakhman,⁶ P. Aguilera,⁷ Z. Ahmed,⁶ H. Albataineh,⁸ K. Allada,⁹ B.

Observations:

#pp/#np increase with Pmiss
 (as predicted by AV18)

#pp stays constant
(dominated by the repulsive core)

#np decrease with Pmiss
(FSI and/or 3N-SRC)

Wiringa, Schiavilla, Pieper, Carlson, arXiv: 1309.3794

Future experiments at Jefferson Lab

E12-11-112: ³He/³H at x>1

Precision measurement of the isospin dependence in the 2N and 3N short range correlation region

Spokespeople: P. Solvignon, J. Arrington, D. Day, D. Higinbotham

Main physics goals

Isospin-dependence

- ✓ Improved precision: extract R(T=1/T=0) to 3.8%
- \checkmark FSI much smaller (inclusive) and expected to cancel in ratio

3N SRCs structure (momentum-sharing and isospin)

Improved A-dependence in light and heavy nuclei

- ✓ Average of ³H, ³He --> A=3 "isoscalar" nucleus
 ✓ Determine isospin dependence --> improved correction for N>Z nuclei,
- extrapolation to nuclear matter

Absolute cross sections (and ratios) for ²H, ³H, ³He: test calculations of FSI for simple, well-understood nuclei

of New Hampshire

E12-11-112: ³He/³H at x>1

of New Hampshire

Patricia Solvignon

Jefferson Lab

29

QE data and Neutron Magnetic FF

In PWIA, ³He/³H with 1.5% uncertainty corresponds to 3% on $G_{M^{n}}$

- ► Limited to $Q^2 \le 1$ GeV², where QE peak has minimal inelastic contribution
- ► This is the region with ~8% discrepancy between the Ankin, Kubon data and the CLAS ratio and the Hall A polarized ³He extraction.

Nuclear effects expected to be small, largely cancel in ratio

This experiment: 0.6, 0.8, 1.0, 1.4, 1.7, 2.4, 2.7 and 3.0 GeV²

EMC vs. SRC

EMC effect due to: high virtuality or local density ???

J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell and P. Solvignon, PRC 86, 065204 (2012)

> No clear conclusion. Needs more data !

After combining results from E12-11-112 and MARATHON experiments (no error bar projected at this time)

of New Hampshire

E12-06-105

Inclusive Scattering from Nuclei at x > 1 in the quasielastic and deeply inelastic regimes.

Spokespeople: J. Arrington, D. Day, N. Fomin, P. Solvignon

Main physics goals

A-dependence of 2N and 3N-SRCs at moderate Q² values for large x

First studies of the size and importance of α -clusters in nuclei

Distribution of superfast quarks in nuclei: high sensitivity to non-hadronic components (6-q bags)

MPSHIRE

Summary

SRCs are an important component to nuclear structure:

~20% of nucleons in SRC Very few (~1%) p-p, n-n pairs

Inclusive scattering measurements from E08-014 and E12-11-112 will map out the 2N- and 3N-SRCs and produce a detailed study of their isospin dependence

- --> E08-014: too early to conclude on the 3N-SRC and the isospin test
- --> E12-11-112 is scheduled to run in Spring 2016

E12-06-105 will probe quark distribution in SRC = EMC effect in SRCs

--> A part of the experiment is scheduled to run in 2017

Several other experiments at 12 GeV to look at SRC and EMC and their possible link.

EXTRA SLIDES

3N-configuration

(a) yields $R(^{3}He/^{3}H) \approx 3.0$ if nucleon #3 is always the doubly-occurring nucleon (a) yields $R(^{3}He/^{3}H) \approx 0.3$ if nucleon #3 is always the singly-occurring nucleon (a) yields $R(^{3}He/^{3}H) \approx 1.4$ if configuration is isospin-independent, as does (b)

R ≠ 1.4 implies isospin dependence AND non-symmetric momentum sharing

of New Hampshiri

Isolating 2N-SRCs

Onset of plateaus is A dependent

Heavier recoil systems do not require as much energy to balance momentum of struck: p_{min} for a given x and Q^2 is smaller

Mean field part in heavy nuclei persist in x to larger values

Have to go to higher x or Q² to insure scattering is not from mean-field nucleon

PSHIRE

Jefferson Lab

36

Light-cone fraction

SRC model: 1N, 2N, 3N, ..., contributions at $x \le 1, 2, 3, ...$

Motion of SRCs: broaden the range of contribution

Relativistic: $x \longrightarrow \alpha_{2N}$

PSHIRE

 α_{2N} is the light-cone variable for the interacting nucleon of the correlated nucleon pair

E12-06-105

Patricia Solvignon

of New Hampshire

Isospin study from ³He/³H ratio

Simple mean field estimates for 2N-SRC

Isospin independent:

$$\frac{\sigma_{{}^{3}He}/3}{\sigma_{{}^{3}H}/3} = \frac{(2\sigma_{p} + 1\sigma_{n})/3}{(1\sigma_{p} + 2\sigma_{n})/3} \xrightarrow{\sigma_{p} \approx 3\sigma_{n}} 1.40$$

n-p (T=0) dominance:

E12-11-112: kinematics

Beam current: 25 μ A, unpolarized, Raster interlock Beam energy:

17.5 Days 4.4 GeV [main production] 1.5 days 2.2 GeV [checkout+QE]

MPSHIRE

Isospin study from ⁴⁸Ca/⁴⁰Ca ratio

Simple mean field estimates for 2N-SRC

Other predictions:

M. Vanhalst, J. Ryckebusch and W. Cosyn, PRC86, 044619 (2012)

 $a_2({}^{40}Ca) \approx a_2({}^{48}Ca)$

Jefferson Lab 41