

Correlations probed in direct twonucleon knockout reactions

Sixth Asia-Pacific Conference on Few-body Problems in Physics 7th April 2014

> Ed Simpson The Australian National University

Outline

- Context and Motivation
- Two-nucleon removal
 - Overview
 - Structure and spatial correlations
 - Momentum distributions
- Recent results
 - Reactions mechanism and core recoil
- Summary

Context and Motivation

Nucleon knockout reactions (~100 MeV/nucleon)

Single-nucleon removal reactions

Knockout reactions

- Energy >80 MeV/nucleon on a light nuclear target (Be, C)
- Ideally 200 MeV/u or greater
- Cross section 5-200 mb

Absolute cross sections

- Cross section proportional to spectroscopic strength
- Suppression of spectroscopic strengths in asymmetric systems

Beam directional momentum distributions

 Width → angular momentum (final state spins, evolution of shell ordering)

Hansen and Tostevin, Annu. Rev. Nucl. Part. Sci. <u>53</u>, 219 (2003) Bertulani and Hansen, PRC <u>70</u> 034609 (2004)

Two-nucleon removal Cross sections, momentum distributions and spatial correlations

⁹Be(²⁸Mg,²⁶Ne^{*})X

²⁸Mg thresholds

Tostevin *et al.*, PRC <u>70</u>, 064602 (2004) Tostevin and Brown, PRC <u>74</u>, 064604 (2006)

Two-nucleon knockout schematic

Impact parameter plane

Assumptions:

- Eikonal (straight-line) reaction dyanmics
- Spectator-core (core states not coupled)
- Sudden (internal coordinates frozen)
- No-recoil (massive core)

Two-nucleon stripping (pure inelastic) Stripping-diffraction (elastic and inelastic) Two-nucleon diffraction (pure elastic)

Two-nucleon stripping

Two-nucleon stripping cross section

$$\sigma_{ss}^{(f)} = \int d\vec{b} \int d\vec{s}_1 \int d\vec{s}_2 \ \mathcal{O}_{ss}(b_c, \vec{s}_1, \vec{s}_2) \ P_{if}(\vec{s}_1, \vec{s}_2)$$
$$\mathcal{O}_{ss} = |\mathcal{S}_c|^2 (1 - |\mathcal{S}_1|^2) (1 - |\mathcal{S}_2|^2)$$

<u>S</u>-matrix in the top approximation (density-folding model) $S_c(b) = \exp\left(-\int dZ \int d\vec{r_p} \int d\vec{r_t} \ \rho_p(r_p) \ \rho_t(r_t) \ t_{NN}(|\vec{b} + \vec{Z} + \vec{r_p} - \vec{r_t}|)\right)$

$$\frac{\text{Joint position probability}}{P_{if}(\vec{s}_1, \vec{s}_2) = \frac{1}{\hat{J}_i} \sum_{M_i M_f} \int dz_1 \int dz_2 \left\langle \Psi_{if} \mid \Psi_{if} \right\rangle_{sp}}$$

Hartree-Fock calculations used to constrain the radial size of BOTH the density distributions and overlap function

Simpson *et al.*, PRL <u>102</u>, 132502 (2009); PRC <u>79</u>, 064621 (2009)

Two-nucleon overlap function

Two-nucleon overlap function

$$\Psi_{if}(1,2) = \langle \Phi_{J_f M_f}(A) | \Psi_{J_i M_i}(A+2) \rangle$$
$$= \sum_{I \mu \alpha} C_{\alpha}^{ifI}(I \mu J_f M_f | J_i M_i) [\overline{\phi_{\beta_1}(1) \otimes \phi_{\beta_2}(2)}]_{I \mu}$$

(SM) Two-nucleon amplitudes (TNA) Parentage amplitude for two-nucleon configuration α and final state i in initial state *i*

$$\alpha \equiv (\beta_1, \beta_2) \quad \beta \equiv (n\ell j)$$

Two-nucleon wave function $u_{n\ell j}(r)$

²⁸Mg structure and cross sections

Shell model two-nucleon amplitudes

Universal sd-shell (USD) two-nucleon amplitudes for different coherent two-nucleon configurations and final states

J_f^{π}	<i>E</i> * (MeV)	$[0d_{3/2}]^2$	$[0d_{3/2}0d_{5/2}]$	$[0d_{5/2}]^2$	$[1s_{1/2}0d_{3/2}]$	$[1s_{1/2}0d_{5/2}]$	$[1s_{1/2}]^2$	Στνα2
0_{1}^{+}	0.0	-0.30146		-1.04685			-0.30496	1.187
2^+_1	2.02	-0.05030	0.37358	-0.63652	-0.06084	-0.13916		0.570
4_{1}^{+}	3.50		0.33134	1.59639				2.658
2^{+}_{2}	3.70	0.04721	-0.07248	0.85297	0.16158	0.17590		0.792

Measured and theoretical cross sections for ${}^{28}Mg(-2p)$, including suppression factor $R_s(2N)=0.5$.

Branching ratios very well reproduced

Tostevin et al., PRC 70, 064602 (2004)

Spatial Correlations

Compared to uncorrelated calculations:

0⁺ enhanced by 70%

4⁺ suppressed by 23%

Pinkston, PRC 29, 1123 (1984); Insolia *et al.*, J. Phys. G <u>15</u>, 1249 (1989) Tostevin, J. Phys. Conf. Ser. <u>49</u>, 21 (2006); Simpson and Tostevin, PRC <u>82</u>, 044616 (2010)

Momentum distributions

Bazin et al., PRL <u>91</u> 012501 (2003); Simpson et al., PRL <u>102</u>, 132502 (2009)

Recent results Reaction mechanisms and core recoil

²⁸Mg(-2p): Reaction mechanisms in 2KO

Missing mass spectrum for ²⁶Ne+2p

Peak at M(⁹Be) is elastic breakup, the rest a mixture of inelastic and elastic mechanisms

Wimmer et al., PRC <u>85</u>, 051603(R) (2012)

Stripping-diffraction: core recoil

No-recoil

 $\sigma_{2N-NR} > \sigma_{2N}$

Including core-recoil

Reaction mechanisms: NR vs. FR in $^{28}Mg(-2p)$

Inclusive cross sections and mechanism-fractions

-5

-10

-15

-20

SS

dd

ds

- ss: $b_{th}(FR)-b_{th}(NR) = +4.7\%$
- $b_{th}(FR)-b_{th}(NR) = -3.2\%$ ds:

 $b_{th}(FR)-b_{th}(NR) = -1.4\%$ dd:

Wimmer *et al.*, PRC 85, 051603(R) (2012) Simpson (in preparation)

²⁸Mg(-2p) final-state-exclusive cross sections

			No-recoil $(A + 2 = 10^5)$				
State	σ_{ss}	σ_{ds}	σ_{dd}	σ_{tot}	σ_{exp}		
0_{1}^{+}	0.633	0.465	0.085	1.183	0.70(15)		
2_{1}^{+}	0.180	0.121	0.020	0.322	0.09(15)		
4_{1}^{+}	0.586	0.374	0.060	1.020	0.58(9)		
2^{+}_{2}	0.252	0.170	0.029	0.450	0.15(9)		
Total	1.651	1.130	0.194	2.975	1.50(10)		
			Full-recoil $(\overline{A+2} = 28)$				
State	σ_{ss}	σ_{ds}	σ_{dd}	σ_{tot}	σ_{exp}		
0_{1}^{+}	0.633	0.367	0.053	1.053	0.70(15)		
2^{+}_{1}	0.180	0.106	0.016	0.302	0.09(15)		
4_{1}^{+}	0.586	0.355	0.054	0.995	0.58(9)		
2^{+}_{2}	0.252	0.146	0.021	0.419	0.15(9)		
Total	1.651	0.974	0.144	2.769	1.50(10)		

Recoil effects depend on the state

 $0^+ = -21\%$ $R_s(NR)=0.50(3)$ $4^+ = -5\%$ $R_s(FR)=0.54(4)$ Total = -14\%Total cross sections = -7%

$[d_{5/2}]^2$ unit normalised overlaps

Cross section, ds1 (mb)

 $\mathcal{S}_c \mathcal{A}_s \mathcal{S}_d \to \mathcal{S}_c \mathcal{A}_s \mathcal{S}_d - \mathcal{S}_c^{(1)} \mathcal{A}_s^{(1)}$

Two-nucleon removal

- Key tool for studying the structure of exotic nuclei
 - Efficient access to basic nuclear spectroscopy
 - Sensitive to structure and two-nucleon spatial correlations
 - In specific cases, structure (configuration mixing) effects evident in momentum distributions

Mechanisms and recoil

- New calculations in good agreement with observed reaction mechanism branches (within large errors)
- High precision tests (with γs) required, with best test:
 - High J in light nuclei
 - Low J in heavier nuclei

Thanks for listening

