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Accessing states on the Lattice

Quantities of interest are correlators

G(~p, t) =
∑
~x

e−i~p·~x〈Ω|χ(x)χ̄(0)|Ω〉

Inserting complete set of states, I =
∑
|α〉〈α|

G(~0, t) ∼
∑
α

e−Mα t 〈Ω|χ |α〉〈α| χ̄ |Ω〉

The terms 〈Ω|χ|α〉 describe the coupling strength Zα of operator χ
to state α
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Result is a sum over exponentials of increasing mass

G(t) ∼
∞∑
α=0

e−Mα t|Zα|2

Consider the effective mass

Meff ≡ log

(
G(t)

G(t+ 1)

)
At large times (t→∞), the ground state will dominate

Meff →M0
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Effective Mass for the pion
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Correlation Matrix methods

Ideally we want interpolators φ̄α such that 〈β|φ̄α|Ω〉 ∝ δαβ

Seek a linear combination of operators χ̄j to produce φ̄α

φ̄α =

N∑
j=1

χ̄ju
α
j

Begin with a matrix of cross-correlators

Gij(t) =
∑
~x

〈Ω|χiχ̄j |Ω〉

multiply on the right by uαj

Gij(t)uαj =
∑
~x

〈Ω|χiχ̄juαj |Ω〉
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Knowledge of the time dependence provides the recurrence relation

Gij(t+ δt)uαj = e−Mα δtGij(t)uαj

Multiplying from the left by G−1 provides an eigenvalue equation for
eigenvectors

[G−1(t)G(t+ δt) ]iju
α
j = e−Mα δtuαj

Having solved for uαj , we can project the matrix of correlators to
produce correlators for the state α

Gα(t) = vαi Gij(t)uαj
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Pion effective mass with Correlation Matrix approach
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Probing hadron structure on the Lattice

To explore the structure a state, we must probe it with some external
current

χ̄j(0) χi(x)

Once again, the correlator will have contributions from a tower of states
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Probing hadron structure on the Lattice

We can use our optimised operators, determined via the two-point
correlation function, to project out the three-point correlation function for
an individual state

uαj (~p)χ̄j(0) vαi (~p ′)χi(x)

One needs to take care of the source and sink momenta as the optimised
operators are momentum dependent
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Nucleon Axial Charge

Nucleon axial charge has been quantity of significant interest on the
lattice

Despite relative simplicity, lattice determinations have been
consistently low

Finite volume effects are known to play a role, but are not the
complete answer

Excited state contamination has suggested as possible issue

Can use correlation matrix methods to eliminate excited state
contaminations
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B. J. Owen et al., Phys. Lett. B 723, 217-223 (2013)



Axial charge of the nucleon – standard approach
Using single operator for source and sink
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Axial charge of the nucleon – standard approach
Using a different operator
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Axial charge of the nucleon –
Correlation matrix approach
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Axial charge of the nucleon –
Comparison between methods
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Projected Correlator for the first nucleon excitation

Correlation Matrix approach is a method for studing excited states
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The Sachs Electric form factor - Quark Sector comparison
(u sector in the proton)
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The Sachs Electric form factor - Quark Sector comparison
(d sector in the proton)
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The Sachs Magnetic form factor - Quark Sector
comparison (u sector in the proton)
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The Sachs Magnetic form factor - Quark Sector
comparison (d sector in the proton)
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Charge radii for the nucleon, ∆+ and first radial excitation
of the nucleon (proton and neutron)

Use dipole Ansatz to calculate charge-square radii
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Nucleon spectrum
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M. S. Mahbub et al., Phys. Lett. B 707, 389-313 (2012)

D. S. Roberts et al., arXiv: 1311.6626 [hep-lat]



Wave Function of 1st Nucleon Resonance - heaviest mass
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D. S. Roberts et al., arXiv: 1311.6626 [hep-lat]



Wave Function of 1st Nucleon Resonance - 2nd heaviest
mass
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D. S. Roberts et al., arXiv: 1311.6626 [hep-lat]



Comparison of radii

One can use wave function to calculate 〈r〉
Gauge dependent

Consider ratio of 〈r〉 between states as comparison between methods

FF: 〈r〉1
〈r〉0 = 1.26, 1.32

WF: 〈r〉1
〈r〉0 = 1.16, 1.08

Consistency, noting that WF method suffers significantly from finite
volume effects which will tend to suppress the value
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Magnetic moments for the nucleon, ∆+ and first radial
excitation of the nucleon (proton and neutron)

Use dipole Ansatz to calculate magnetic moment
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Conclusion

Demonstrated how use correlation matrix methods to construct
”ideal” operators

Seen how correlation techniques can improve ground state overlap

Clear plateau observed for Form Factors of the 1st nucleon excitation

Consistency with wave function results

Magnetic moment is consistent with simple quark model expectation
for s-wave excitation

Further investigation required to determine dominant contribution to
resonance at heavier masses

In process of extending analysis down to light masses
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