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The Λ(1405)

• The Λ(1405) is the lowest-lying odd-parity state of the Λ baryon.
• Even though it contains a heavy strange quark and has odd parity

its mass is lower than any other excited spin-1/2 baryon.
• It has a mass of 1405.1+1.3

−1.0 MeV.
◦ This is lower than the lowest odd-parity nucleon state (N(1535)),

even though it has a valence strange quark.

• Before the existence of quarks was confirmed, Dalitz and
co-workers speculated that it might be a molecular state of an
anti-kaon bound to a nucleon.

• For almost 50 years the structure of the Λ(1405) resonance has
been a subject of debate.
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The Λ(1405)

• Here we’ll see how a new lattice QCD simulation showing
◦ The Λ(1405) strange magnetic form factor vanishes,

together with
◦ A Hamiltonian effective field theory analysis of the lattice QCD energy

levels,
unambiguously establishes that the structure is dominated by a
bound anti-kaon–nucleon component.
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Why focus on the strange magnetic form factor?

• It provides direct insight into the possible dominance of a
molecular KN bound state.

• In forming such a molecular state, the Λ(u, d , s) valence quark
configuration is complemented by
◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d , d pair making a K 0(s, d) - neutron (d , d , u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.
• Thus, the strange quark does not contribute to the magnetic form

factor of the Λ(1405) when it is in a KN molecule.
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Outline

Techniques for exciting the Λ(1405) in Lattice QCD

Quark-sector contributions to the electric form factor of the Λ(1405)

Quark-sector contributions to the magnetic form factor of the Λ(1405)

Hamiltonian effective field theory model: m0, πΣ, KN, KΞ and ηΛ.

Conclusion
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The Λ(1405) and Lattice QCD

Our recent work has successfully isolated three low-lying odd-parity
spin-1/2 states.

B. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

• An extrapolation of the trend of the lowest state reproduces the
mass of the Λ(1405).

• Subsequent studies have confirmed these results.
G. P. Engel, C. B. Lang, A. Schäfer, Phys. Rev. D 87, 034502 (2013)
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The Λ(1405) and Lattice QCD
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Simulation Details

We are using the PACS-CS (2 + 1)-flavour ensembles, available
through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

• Lattice size of 323 × 64 with β = 1.90. L ' 3 fm.

• 5 pion masses, ranging from 640 MeV down to 156 MeV.
• Single strange quark mass, with κs = 0.13640.
◦ We use κs = 0.13665 for the valence strange quarks to reproduce the

physical kaon mass.
• The strange quark κs is held fixed as the light quark masses vary.
◦ Changes in the strange quark contributions are environmental effects.

• We consider both the Sommer and PACS-CS schemes to set the
scale.
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The Λ(1405) and Lattice QCD

The variational analysis is necessary to isolate the Λ(1405).
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Variational Analysis

By using multiple operators, we can isolate and analyse individual
energy eigenstates:
• Construct the correlation matrix

Gij(p; t) =
∑

x
e−i p·x tr ( Γ 〈Ω|χi (x)χj(0) |Ω〉 ) ,

for some set {χi } operators that couple to the states of interest.

• We seek the linear combinations of the operators {χi } that
perfectly isolate individual energy eigenstates, α, at momentum p:

φα = vαi (p)χi , φα = uαi (p)χi .
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Variational Analysis

• When successful, only state α participates in the correlation
function, and one can write recurrence relations

G(p; t + δt) uα(p) = e−Eα(p) δt G(p; t) uα(p)

vαT(p) G(p; t + δt) = e−Eα(p) δt vαT(p) G(p; t)

• Solve for the left, vα(p), and right, uα(p), generalised eigenvectors
of G(p; t + δt) and G(p; t):
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Eigenstate-Projected Correlation Functions

• Using these optimal operators, eigenstate-projected correlation
functions are obtained

Gα(p; t) =
∑

x
e−i p·x 〈Ω|φα(x)φα(0)|Ω〉

=
∑

x
e−i p·x 〈Ω|vαi (p)χi (x)χj(0) uαj (p)|Ω〉

= vαT(p) G(p; t) uα(p)
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The importance of eigenstate isolation (red)
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Probing with the electromagnetic current
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Only the projected correlator has acceptable χ2/dof
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Operators Used in Λ(1405) Analysis

We consider local three-quark operators with the correct quantum
numbers for the Λ channel, including
• Flavour-octet operators

χ8
1 =

1√
6
εabc

(
2(uaCγ5db)sc + (uaCγ5sb)dc − (daCγ5sb)uc

)
χ8

2 =
1√
6
εabc

(
2(uaCdb)γ5sc + (uaCsb)γ5dc − (daCsb)γ5uc

)
• Flavour-singlet operator

χ1 = 2εabc
(

(uaCγ5db)sc − (uaCγ5sb)dc + (daCγ5sb)uc
)
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Operators Used in Λ(1405) Analysis

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
• These results use 16 and 100 sweeps.
◦ Gives a 6× 6 matrix.

• Also considered 35 and 100 sweeps.
◦ Results are consistent with larger statistical uncertainties.

16 of 40



Operators Used in Λ(1405) Analysis

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
• These results use 16 and 100 sweeps.
◦ Gives a 6× 6 matrix.

• Also considered 35 and 100 sweeps.
◦ Results are consistent with larger statistical uncertainties.

16 of 40



Flavour structure of the Λ(1405)
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Extracting Form Factors from Lattice QCD

• To extract the form factors for a state α, we need to calculate the
three-point correlation function

Gµ
α(p′, p; t2, t1) =

∑
x1, x2

e−i p′·x2ei(p′−p)·x1 〈Ω|φα(x2) jµ(x1)φα(0)|Ω〉

• This takes the form

e−Eα(p′)(t2−t1)e−Eα(p)t1
∑
s, s′

〈Ω|φα|p′, s ′〉 〈p′, s ′|jµ|p, s〉 〈p, s|φα|Ω〉

• 〈p′, s ′|jµ|p, s〉 encodes the form factors of the interaction.
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Current Matrix Elements for Spin-1/2 Baryons
The current matrix element for spin-1/2 baryons has the form

〈p′, s ′|jµ|p, s〉 =

(
m2
α

Eα(p)Eα(p′)

)1/2

×

× u(p′)
(

F1(q2) γµ + i F2(q2)σµν
qν

2mα

)
u(p)

• The Dirac and Pauli form factors are related to the Sachs form
factors through

GE(q2) = F1(q2)− q2

(2mα)2 F2(q2)

GM(q2) = F1(q2) + F2(q2)
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Current Matrix Elements for Spin-1/2 Baryons

The light- and strange-quark sector contributions can be isolated.
• Eg. The strange sector is isolated by setting qu = qd = 0.
• qs is set to unity such that we report results for single quarks of

unit charge.
• Symmetry in the u-d sector provides Gu(Q2) = Gd (Q2) ≡ G`(Q2)

for qu = qd = 1.
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GE for the Λ(1405) at Q2 ∼ 0.15 GeV2
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Correcting for Varying Q2

Since the Q2 changes with m2
π, we need to shift to a common Q2 to

make meaningful comparisons:

• Assume a dipole dependence on Q2:

GE(Q2) =

(
1

1 + Q2

Λ2

)2

GE(0)

• Solve for Λ using GE(0) = 1 (unit charge quarks) for each m2
π

• Evaluate GE at a common Q2 (we select 0.16 GeV2)
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GE for the Λ(1405) at Q2 = 0.16 GeV2
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Structure of the Λ(1405)

When compared to the ground state, these results are consistent with
the development of a non-trivial KN component at light quark
masses.

• Noting that the centre of mass of the K (s, `) N(`, u, d) is nearer
the heavier N,

◦ The anti–light-quark contribution, `, is distributed further out by the
K and leaves an enhanced light-quark form factor.

◦ The strange quark may be distributed further out by the K and thus
have a smaller form factor.
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GM for the Λ(1405) at Q2 ∼ 0.15 GeV2

light sector strange sector
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Λ(1405) magnetic form factor observations

• SU(3)-flavour symmetry is manifest for m` ∼ ms . All three quark
flavours play a similar role.

• G`M ≡ Gu
M ≡ Gd

M ' Gs
M for the heaviest three masses.
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Λ(1405) magnetic form factor observations

light sector strange sector
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Λ(1405) magnetic form factor observations

• The internal structure of the Λ(1405) reorganises at the lightest
quark mass.

• The strange quark contribution to the magnetic form factor of the
Λ(1405) drops by an order of magnitude and approaches zero.
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Correlation function ratio providing Gs
M(Q2)
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Λ(1405) magnetic form factor observations

• As the simulation parameters describing the strange quark are held
fixed, this is a remarkable environmental effect of unprecedented
strength.

• We observe an important rearrangement of the quark structure
within the Λ(1405) consistent with the dominance of a molecular
KN bound state.
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Hamiltonian Effective Field Theory Model

• In a finite periodic volume, momentum is quantised to n (2π/L).

• Working on a cubic volume of extent L on each side, it is
convenient to define the momentum magnitudes

kn =
√

n2
x + n2

y + n2
z

2π
L ,

with ni = 0, 1, 2, . . . and integer n = n2
x + n2

y + n2
z .

• The non-interacting Hamiltonian H0 has diagonal entries
corresponding to the relativistic non-interacting meson-baryon
energies available on the finite periodic volume at total
three-momentum zero.

• The four octet meson-baryon interaction channels of the Λ(1405)
are included: πΣ, KN, KΞ and ηΛ.

• It also includes a single-particle state with bare mass, m0 + α0 m2
π.
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Hamiltonian model, H0

Denoting each meson-baryon energy by ωMB(kn) = ωM(kn) + ωB(kn),
with ωA(kn) ≡

√
k2

n + m2
A, the non-interacting Hamiltonian takes the

form

H0 =



m0 + α0 m2
π 0 0 · · ·

0
ωπΣ(k0)

. . .
ωηΛ(k0)

0 · · ·

0 0
ωπΣ(k1)

. . .
ωηΛ(k1)

· · ·

...
...

...
. . .


.
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Hamiltonian model, HI

• Interaction entries describe the coupling of the single-particle state
to the two-particle meson-baryon states.

• Each entry represents the S-wave interaction energy of the
Λ(1405) with one of the four channels at a certain value for kn.

HI =



0 gπΣ(k0) · · · gηΛ(k0) gπΣ(k1) · · · gηΛ(k1) · · ·
gπΣ(k0) 0 · · ·

...
... 0

gηΛ(k0)
. . .

gπΣ(k1)
...

gηΛ(k1)
...


.
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Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model is

λ = m0 + α0 m2
π −

∑
M,B

∞∑
n=0

g2
MB(kn)

ωMB(kn)− λ
.

with λ denoting the energy eigenvalue.

• As λ is finite, the pole in the denominator of the right-hand side is
never accessed.

• The bare mass m0 + α0 m2
π encounters self-energy corrections that

lead to avoided level-crossings in the finite-volume energy
eigenstates.

• Reference to chiral effective field theory provides the form of
gMB(kn).
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Hamiltonian model, HI

• The form of the interaction is derived from chiral effective field
theory.

gMB(kn) =

(
κMB

16π2f 2
π

C3(n)

4π

(2π
L

)3
ωM(kn) u2(kn)

)1/2

.

• κMB denotes the SU(3)-flavour singlet couplings

κπΣ = 3ξ0, κK̄N = 2ξ0, κKΞ = 2ξ0, κηΛ = ξ0,

with ξ0 = 0.75 reproducing the physical Λ(1405)→ πΣ width.

• C3(n) is a combinatorial factor equal to the number of unique
permutations of the momenta indices ±nx , ±ny and ±nz .

• u(kn) is a dipole regulator, with regularization scale Λ = 0.8 GeV.
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Hamiltonian model solution and fit

• The LAPACK software library routine dgeev is used to obtain the
eigenvalues and eigenvectors of H.

• The bare mass parameters m0 and α0 are determined by a fit to
the lattice QCD results.

32 of 40



Hamiltonian model solution and fit

• The LAPACK software library routine dgeev is used to obtain the
eigenvalues and eigenvectors of H.

• The bare mass parameters m0 and α0 are determined by a fit to
the lattice QCD results.

32 of 40



Hamiltonian model fit

33 of 40



Avoided Level Crossing
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Energy eigenstate, |E 〉, basis |state〉 composition
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Infinite-volume reconstruction of the Λ(1405) energy
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Bootstrap uncertainty at the physical pion mass
• Bootstraps are calculated by altering the value of each lattice data

point by a Gaussian-distributed random number, weighted by the
uncertainty.
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Λ(1405) mass distribution at the physical pion mass

38 of 40



Infinite-volume reconstruction of the Λ(1405) energy
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Conclusions

• The Λ(1405) has been identified on the lattice through a study of
its quark mass dependence and its relation to avoided level
crossings in effective field theory.

• The structure of the Λ(1405) is dominated by a molecular bound
state of an anti-kaon and a nucleon.

• This structure is signified by:

◦ The vanishing of the strange quark contribution to the magnetic
moment of the Λ(1405), and

◦ The dominance of the KN component found in the finite-volume
effective field theory Hamiltonian treatment.
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Conclusions

• The presence of a nontrivial single-particle three-quark component
explains why the state is readily accessible in lattice correlation
matrix analyses constructed with three-quark operators.

• In the infinite-volume limit, the Hamiltonian model describes a
quark mass dependence that is consistent with Nature.

• The result ends 50 years of speculation on the structure of the
Λ(1405) resonance.

• The structure of the Λ(1405) is dominated by a molecular bound
state of an anti-kaon and a nucleon.
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