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The A(1405)

e The A(1405) is the lowest-lying odd-parity state of the A baryon.

e Even though it contains a heavy strange quark and has odd parity
its mass is lower than any other excited spin-1/2 baryon.
o It has a mass of 1405.1773 MeV.

o This is lower than the lowest odd-parity nucleon state (N(1535)),
even though it has a valence strange quark.
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e Even though it contains a heavy strange quark and has odd parity
its mass is lower than any other excited spin-1/2 baryon.

o It has a mass of 1405.1773 MeV.
o This is lower than the lowest odd-parity nucleon state (N(1535)),

even though it has a valence strange quark.

e Before the existence of quarks was confirmed, Dalitz and
co-workers speculated that it might be a molecular state of an
anti-kaon bound to a nucleon.

 For almost 50 years the structure of the A(1405) resonance has
been a subject of debate.
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The A(1405) i

s

* Here we'll see how a new lattice QCD simulation showing
o The A(1405) strange magnetic form factor vanishes,
together with
o A Hamiltonian effective field theory analysis of the lattice QCD energy
levels,
unambiguously establishes that the structure is dominated by a
bound anti-kaon—nucleon component.
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Why focus on the strange magnetic form factor? | 4

e |t provides direct insight into the possible dominance of a
molecular KN bound state.
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Why focus on the strange magnetic form factor? %

e |t provides direct insight into the possible dominance of a
molecular KN bound state.

¢ In forming such a molecular state, the A(u, d, s) valence quark
configuration is complemented by

© A u,U pair making a K™ (s, U) - proton (u, u,d) bound state, or
o A d,d pair making a K°(s, d) - neutron (d, d, u) bound state.

¢ In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.
e To conserve parity, the kaon has zero orbital angular momentum.

e Thus, the strange quark does not contribute to the magnetic form
factor of the A(1405) when it is in a KN molecule.
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_ SUBAT@MIC
Outline %

s

Techniques for exciting the A(1405) in Lattice QCD

Quark-sector contributions to the electric form factor of the A(1405)
Quark-sector contributions to the magnetic form factor of the A(1405)
Hamiltonian effective field theory model: mg, 7%, KN, K= and nA.

Conclusion
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The A(1405) and Lattice QCD W

s

Our recent work has successfully isolated three low-lying odd-parity
spin-1/2 states.
B. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

e An extrapolation of the trend of the lowest state reproduces the
mass of the A(1405).

e Subsequent studies have confirmed these results.

G. P. Engel, C. B. Lang, A. Schifer, Phys. Rev. D 87, 034502 (2013)
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. . ) SUBATE e
Simulation Details %

s

We are using the PACS-CS (2 + 1)-flavour ensembles, available
through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

o Lattice size of 323 x 64 with 3 =1.90. L ~ 3 fm.
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Simulation Details

We are using the PACS-CS (2 + 1)-flavour ensembles, available
through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
Lattice size of 323 x 64 with § = 1.90. L ~ 3 fm.
e 5 pion masses, ranging from 640 MeV down to 156 MeV.

Single strange quark mass, with ks = 0.13640.

o We use ks = 0.13665 for the valence strange quarks to reproduce the
physical kaon mass.

The strange quark ks is held fixed as the light quark masses vary.
o Changes in the strange quark contributions are environmental effects.
We consider both the Sommer and PACS-CS schemes to set the
scale.
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The A(1405) and Lattice QCD W

s

The variational analysis is necessary to isolate the A(1405).
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I . suBAT@mIc
Variational Analysis i

s

By using multiple operators, we can isolate and analyse individual
energy eigenstates:

e Construct the correlation matrix
Gi(pit) = e P tr (T (Q| xi(x) X;(0)|)),
X

for some set { x; } operators that couple to the states of interest.
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I . suBAT@mIc
Variational Analysis %

s

By using multiple operators, we can isolate and analyse individual
energy eigenstates:

e Construct the correlation matrix
Gi(pit) = > e Pt (T (Q] xi(x)X;(0) ),
X

for some set { x; } operators that couple to the states of interest.

e We seek the linear combinations of the operators { x; } that
perfectly isolate individual energy eigenstates, a;, at momentum p:

¢ =v(P)xi, % =u(P)Xi-
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Lo . SUBTQUIC
Variational Analysis %

s

e When successful, only state « participates in the correlation
function, and one can write recurrence relations

G(p; t+6t)u®(p) = e =PV 2T G(p; t) u®(p)

veT(p) G(p; t + 6t) = e E~P)O1yT(p) G(p; 1)
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I . suBAT@mIc
Variational Analysis %

s

e When successful, only state « participates in the correlation
function, and one can write recurrence relations

G(p; t+6t)u®(p) = e =PV 2T G(p; t) u®(p)

v*T(p) G(p; t + 0t) = e 5Pty (p) G(p; 1)

e Solve for the left, v*(p), and right, u®(p), generalised eigenvectors
of G(p; t+0t) and G(p; t):
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. ) ) ) SUBATEMIC
Eigenstate-Projected Correlation Functions i

s

e Using these optimal operators, eigenstate-projected correlation
functions are obtained

G(p;t) =) _ e 'PX(Q[¢%(x) 6*(0)|Q)
=Y e P Qv (p) xi(x) X;j(0) uf (p)|Q)

=v*T(p) G(p; t) u®(p)
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SUBATEMIC
The importance of eigenstate isolation (red) %
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Probing with the electromagnetic current
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SUBATEMIC
Only the projected correlator has acceptable x2/dof %
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Operators Used in A(1405) Analysis N ]

s

We consider local three-quark operators with the correct quantum
numbers for the A channel, including

e Flavour-octet operators

1
X§ = —=2¢ (2(u” Cysd®)s€ + (17 Crss®)d® — (d°Crss®)uf)

V6

1
S = —_gabe (2(uaCdb)’y5SC + (UaCSb)”)’SdC - (dacsb)%“C)

V6

e Flavour-singlet operator

! = 2e%¢ ((uaC'y5db)sC — (u?CryssP)d® + (daC'y5sb)uC>
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Operators Used in A(1405) Analysis N ]

s

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
e These results use 16 and 100 sweeps.

o Gives a 6 X 6 matrix.
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Operators Used in A(1405) Analysis N ]

s

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
e These results use 16 and 100 sweeps.
o Gives a 6 X 6 matrix.
e Also considered 35 and 100 sweeps.
o Results are consistent with larger statistical uncertainties.
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Flavour structure of the A(1405) N

s

10 g

0.8 [ . 16 sweeps 100 sweeps i
[ : X8 ¥x ]
Q6:' X5 LI ]
[ £x B

- !

1 .

04F
F
[
1

0.2:— £ ) [] _

unit eigenvector component

|
[ 1
|
i B L
0 0 'l 'l 'l 'l
0.0 0.1 0.2 0.3 0.4 0.5

17 of 40



: . Sinemc
Extracting Form Factors from Lattice QCD %

e To extract the form factors for a state «, we need to calculate the
three-point correlation function

Gh(p P2, t1) = D e PRI Q6% (x0) j# (1) 67(0)I)

X1, X2
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) . Sinemc
Extracting Form Factors from Lattice QCD %

e To extract the form factors for a state «, we need to calculate the
three-point correlation function

Gh(p P2, t1) = D e PRI Q6% (x0) j# (1) 67(0)I)

X1, X2

e This takes the form

e FePE-t)emEal®)n % 7 (Q|¢% o, 5') (P, S|P, 5) (P s[6719)

s, s’

e (p',s'|j*|p, s) encodes the form factors of the interaction.
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Current Matrix Elements for Spin-1/2 Baryons sumﬂ:ﬁ

The current matrix element for spin-1/2 baryons has the form

) 1/2
<p/,5/UM]p,S> = (Wé(p’)) "

< a(v) (Fule) " +iFal?) aﬁ) u(p)
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Current Matrix Elements for Spin-1/2 Baryons SUW%

The current matrix element for spin-1/2 baryons has the form

) 1/2
<p/,5/UM]p,5> = (Wé(p’)) "

< a(p’) <F1(q2)7”+iF2(q2)U“”27:a> u(p)

e The Dirac and Pauli form factors are related to the Sachs form

factors through
2 2 9’ 2
gE(q ) = F]-(q ) - (2ma)2 F2(q )

m(q®) = F1(¢%) + Fa(q?)
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Current Matrix Elements for Spin-1/2 Baryons SUW%

The light- and strange-quark sector contributions can be isolated.
e Eg. The strange sector is isolated by setting g, = g4 = 0.
® s is set to unity such that we report results for single quarks of

unit charge.
o Symmetry in the u-d sector provides GU(Q%) = G9(Q?) = G*(@?)
for g, = qq4 = 1.
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Ge for the A(1405) at @2 ~ 0.15 GeV? W

s
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Correcting for Varying @2 N ;

s

Since the Q? changes with m2, we need to shift to a common Q? to
make meaningful comparisons:
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s
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Correcting for Varying Q2 N ;

s

Since the Q? changes with m2, we need to shift to a common Q? to
make meaningful comparisons:

e Assume a dipole dependence on Q?:
1 2
Ge(@®) = —— | Ge(0
E( ) (1 T %22_> E( )

¢ Solve for A using Ge(0) = 1 (unit charge quarks) for each m2

e Evaluate Gg at a common Q2 (we select 0.16 GeV?)
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Ge for the A(1405) at Q2 = 0.16 GeV?
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Structure of the A(1405) SUW%

When compared to the ground state, these results are consistent with
the development of a non-trivial KN component at light quark
masses.
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Structure of the A(1405) SUW%

When compared to the ground state, these results are consistent with
the development of a non-trivial KN component at light quark
masses.
e Noting that the centre of mass of the K(s, /) N(¢, u,d) is nearer
the heavier N,
o Ihe anti—light-quark contribution, ¢, is distributed further out by the
K and leaves an enhanced light-quark form factor. _
o The strange quark may be distributed further out by the K and thus
have a smaller form factor.
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Gu for the A(1405) at Q2 ~ 0.15 GeV?
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A(1405) magnetic form factor observations

e SU(3)-flavour symmetry is manifest for my ~ ms. All three quark
flavours play a similar role.

° Gi, =Gl = Gg ~ G/ for the heaviest three masses.
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A(1405) magnetic form factor observations %
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A(1405) magnetic form factor observations sum%}’

s

e The internal structure of the A(1405) reorganises at the lightest
quark mass.

e The strange quark contribution to the magnetic form factor of the
A(1405) drops by an order of magnitude and approaches zero.
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Correlation function ratio providing G3,(Q?)
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A(1405) magnetic form factor observations sum%}’

s

e As the simulation parameters describing the strange quark are held
fixed, this is a remarkable environmental effect of unprecedented
strength.

e \We observe an important rearrangement of the quark structure
within the A(1405) consistent with the dominance of a molecular
KN bound state.
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Hamiltonian Effective Field Theory Model sum%

* In a finite periodic volume, momentum is quantised to n (27 /L).
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Hamiltonian Effective Field Theory Model SUW%

* In a finite periodic volume, momentum is quantised to n (27 /L).
e Working on a cubic volume of extent L on each side, it is
convenient to define the momentum magnitudes

27
kn = \/n2—|—n2—i—n2 o

with n; =0,1,2,... and integer n = n)% + nf, + ng.
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Hamiltonian Effective Field Theory Model SUW%

* In a finite periodic volume, momentum is quantised to n (27 /L).
e Working on a cubic volume of extent L on each side, it is
convenient to define the momentum magnitudes

27
kn = \/n2—|—n2—i—n2 o

with n; =0,1,2,... and integer n = n)2< + nf, + ng.
e The non-interacting Hamiltonian Hy has diagonal entries
corresponding to the relativistic non-interacting meson-baryon
energies available on the finite periodic volume at total
three-momentum zero.
e The four octet meson-baryon interaction channels of the A(1405)
are included: 7%, KN, K= and nA.
e It also includes a single-particle state with bare mass, mg + ag m?2.
27 of 40
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Hamiltonian model, H,

Denoting each meson-baryon energy by wyg(kn) = wm(kn) + wa(kn),
with wa(kn) = \/k2 + m?3, the non-interacting Hamiltonian takes the

form
mo + ap m2 0 0
WWZ(kO)
0 0
wna (ko)
Ho = wrs (k1)
0 0
wya (k1)

28 of 40
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_ _ SUBAT@MIC
Hamiltonian model, H, %

s

e Interaction entries describe the coupling of the single-particle state
to the two-particle meson-baryon states.
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_ _ SUBAT@MIC
Hamiltonian model, H, %

e Interaction entries describe the coupling of the single-particle state
to the two-particle meson-baryon states.

e Each entry represents the S-wave interaction energy of the
A(1405) with one of the four channels at a certain value for k.

0 ngo(ko) o gnalko)  grz(k1) - gpalk) -

gw):(k(l)

gna(ko)
H, = n
! grx (ki)

gn/\.(kl)
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SUBAT@QMIC
Eigenvalue Equation Form %

s

e The eigenvalue equation corresponding to our Hamiltonian model is

A= mo+aomt— 33 —Buelka)

M.B n— o wm(kn) = A~

with X denoting the energy eigenvalue.
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. ) SUBATEQMIC
Eigenvalue Equation Form %

s

e The eigenvalue equation corresponding to our Hamiltonian model is

A= motagmd— 33 Emelka)

M.B n— o wm(kn) = A~

with X denoting the energy eigenvalue.

e As A is finite, the pole in the denominator of the right-hand side is
never accessed.

e The bare mass mg + ap m2 encounters self-energy corrections that
lead to avoided level-crossings in the finite-volume energy
eigenstates.
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Eigenvalue Equation Form %

s

e The eigenvalue equation corresponding to our Hamiltonian model is

A= motagmd— 33 Emelka)

M.B n— o wm(kn) = A~

with X denoting the energy eigenvalue.

e As A is finite, the pole in the denominator of the right-hand side is
never accessed.

e The bare mass mg + ap m2 encounters self-energy corrections that
lead to avoided level-crossings in the finite-volume energy
eigenstates.

e Reference to chiral effective field theory provides the form of
gms(kn).
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Hamiltonian model, H, %
e The form of the interaction is derived from chiral effective field

theory.
1/2
KMB C3(n) 2T 3 2
gms(kn) = (167_‘_—2’;2? (T wm(kn) u=(kn) | -

* kMg denotes the SU(3)-flavour singlet couplings
kxx = 3o, kin = 280, kk= = 280, kgn = o,

with £ = 0.75 reproducing the physical A(1405) — 7% width.
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Hamiltonian model, H, %
e The form of the interaction is derived from chiral effective field

theory.
1/2
KMB C3(n) 2T 3 2

e rympg denotes the SU(3)-flavour singlet couplings
kxx = 3o, kin = 280, kk= = 280, kgn = o,

with £ = 0.75 reproducing the physical A(1405) — 7% width.

e (3(n) is a combinatorial factor equal to the number of unique
permutations of the momenta indices £n,, £n, and £n;.

* u(kp) is a dipole regulator, with regularization scale A = 0.8 GeV.
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Hamiltonian model solution and fit %

s

e The LAPACK software library routine dgeev is used to obtain the
eigenvalues and eigenvectors of H.

32 of 40
EEEEE————————————————————————



SUBAT@MIC
Hamiltonian model solution and fit %

s

e The LAPACK software library routine dgeev is used to obtain the
eigenvalues and eigenvectors of H.

e The bare mass parameters mg and «q are determined by a fit to
the lattice QCD results.
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Hamiltonian model fit %
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Avoided Level Crossing %
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Energy eigenstate, |E), basis |state) composition %
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Infinite-volume reconstruction of the A(1405) energy B¥
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Bootstrap uncertainty at the physical pion mass %

e Bootstraps are calculated by altering the value of each lattice data
point by a Gaussian-distributed random number, weighted by the

uncertainty.
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A(1405) mass distribution at the physical pion massgu$
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Infinite-volume reconstruction of the A(1405) energy B¥
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1.5 ya — - Most probable physical value of A(1405)
— — non-int. 7¥ energy
---- non-int. KN energy

14 : / — — non-—int. K= energy 1
E/ --- non-—int. 7A energy
1.3 ! 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5
m ? (GeV?)

39 of 40



Conclusions

e The A(1405) has been identified on the lattice through a study of
its quark mass dependence and its relation to avoided level
crossings in effective field theory.
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Conclusions %

s

e The A(1405) has been identified on the lattice through a study of
its quark mass dependence and its relation to avoided level
crossings in effective field theory.

e The structure of the A(1405) is dominated by a molecular bound
state of an anti-kaon and a nucleon.
e This structure is signified by:

o The vanishing of the strange quark contribution to the magnetic
moment of the A(1405), and

o The dominance of the KN component found in the finite-volume
effective field theory Hamiltonian treatment.
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Conclusions %

s

e The presence of a nontrivial single-particle three-quark component
explains why the state is readily accessible in lattice correlation
matrix analyses constructed with three-quark operators.
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e The presence of a nontrivial single-particle three-quark component
explains why the state is readily accessible in lattice correlation
matrix analyses constructed with three-quark operators.

¢ In the infinite-volume limit, the Hamiltonian model describes a
quark mass dependence that is consistent with Nature.

e The result ends 50 years of speculation on the structure of the
A(1405) resonance.

e The structure of the A(1405) is dominated by a molecular bound
state of an anti-kaon and a nucleon.
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