First Results from Qweak

P.M. King Ohio University

for the Qweak Collaboration

Sixth Asia-Pacific Conference on Few-Body Problems in Physics 6 April 2014, Hahndorf, SA

Overview

- Qweak measures the parity violating elastic asymmetry in e-p scattering at $Q^2 = 0.025 \text{ GeV}^2$ in order to extract $Q_w(p)$ and $\sin^2 \theta_w$
 - Deviation from SM expectations would be a sign of new physics with a TeV mass-scale
- Qweak had three running periods in Hall C at Jefferson Lab
 - Run 0: (Jan-Feb 2011); about 1/25 of the total data set.
 Published Oct 2013; Phys.Rev.Lett. 111, 141803.
 - Run 1 (Feb-May 2011) Ongoing analysis; results likely within a year

or so

- Run 2 (Nov 2011-May 2012)
- Several ancillary measurements were taken to determine or constrain background processes or corrections

Parity-Violating Electron Scattering

Parity violated in the weak interaction: form a parity-violating asymmetry

$$A_{PV}(p) = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto rac{\mathcal{M}_{PV}^{NC}}{\mathcal{M}^{EM}} \propto rac{Q^2}{M_Z^2} \quad ext{when } Q^2 \ll M_Z^2$$

P.M. King; Qweak; APFB2014

Parity violating electron scattering

$$A_{LR} = \frac{-G_{\mu} Q^2}{4\pi\alpha\sqrt{2}} \left[\frac{\varepsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_W)\varepsilon' G_M^{\gamma} G_A^{e}}{\varepsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2} \right]$$

Weak Charges

Electron-quark scattering, four-fermion contact interaction $\mathcal{L}_{eq}^{PV} = -\frac{G_F}{\sqrt{2}} \sum_{i} \left[C_{1i} \overline{e} \gamma_{\mu} \gamma_{5} e \overline{q} \gamma^{\mu} q + C_{2q} \overline{e} \gamma_{\mu} e \overline{q} \gamma^{\mu} \gamma^{5} q \right] + \mathcal{L}_{new}^{PV}$

Particle	Electric charge	Weak vector charge $(\sin^2 heta_W pprox rac{1}{4})$
e	-1	$Q_W^e = -1 + 4 \sin^2 heta_W pprox 0$
u	$+\frac{2}{3}$	$-2C_{1u}=+1-rac{8}{3}\sin^2 heta_Wpprox+rac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d}=-1+rac{4}{3}\sin^2 heta_Wpprox-rac{2}{3}$
p(uud)	+1	$Q^p_W = 1 - 4 \sin^2 heta_W pprox 0.07$
n(udd)	0	$Q_{W}^{n}=-1$

Note "accidental" suppression of Q^{p}_{weak} ; this leads to sensitivity to New Physics

Sensitivity to new physics

 Suppose some new physics adds a contact term to the PV electron-quark Lagrangian, with coupling constant, g, and mass, A:

Erler et al. PRD 68, 016006 (2003)

$$\mathcal{L}_{e-q}^{PV} = \mathcal{L}_{SM}^{PV} + \mathcal{L}_{New}^{PV}$$

$$= -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \bar{q} \gamma^{\mu} q + \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q$$

$$\frac{\Lambda}{g} \sim \left(\sqrt{2} G_F \Delta Q_W^p\right)^{-\frac{1}{2}} \sim O\left(TeV\right)$$

$$\frac{1}{g} \sim \left(\sqrt{2} G_F \Delta Q_W^p\right)^{-\frac{1}{2}} \sim O\left(TeV\right)$$
RPC SUSY Generic Z' RPV SUSY Leptoquarks Leptoquarks PM. King; Qweak; APFB2014 6

Qweak Overview

Jefferson Lab (6 GeV Era)

Qweak Installation: May 2010-May 2012

~1 year of beam in 3 running periods:

- Run 0 Jan – Feb 2011
- Run 1 Feb – May 2011

• Run 2 Nov 2011 – May 2012

Asymmetry ~250 ppb Error goal ~5 ppb

Qweak Apparatus Quartz Bar Detectors 8-fold symmetry **Production Mode:** 180 μA, Integrating Toroidal Spectrometer 35 cm LH₂ target e-beam E = 1.16 GeV $I = 180 \ \mu A$ Acceptance-defining P = 88% High-density concrete Pb collimator shielding wall

Qweak During Installation

e- beam

Acceptance-defining Pb collimator

Toroidal

Spectrometer

High-density concrete shielding wall

Quartz Bar

Detectors

Target Design and Performance

- 35 cm LH₂(4% X₀)
 - 20K, 30-35 psia
 - ~3 kW power
- **Designed using CFD** •

Target "Boiling" Noise: target density fluctuations

Contours of X Velocity (m/s)	Apr 05, 2009
1.11100 1001	FLUENT 12.0 (3d, dp, pbns, rke)

P.M. King; Oweak; APFB2014

Main Detectors

• Eight 2m long radiation-hard fused silica Čerenkov detectors

Installed 2cm lead pre-radiators

Measured profile in 6 o'clock octant

Electrons focused on detectors by QTOR Photons show collimator aperture shape

Kinematics Determination

- Drift chambers before and after magnetic field
- Low current, reconstruct individual events
- Systematic studies

Precision Polarimetry

• Two independent devices for <1% polarization

Measurement process

- "Helicity windows" occur at about 960 Hz
 - Groups of four windows have helicity pattern +--+ or -++- chosen pseudorandomly
 - Helicity reporting is delayed
- Detector and beam monitor signals are integrated over the window
- Asymmetries are constructed for each pattern $A = \frac{Y_{+} - Y_{-}}{Y_{+} + Y_{-}}$

Beam Parameter Corrections

- Helicity correlated beam parameter variations can produce an asymmetry in the detectors
 - Symmetric detectors give partial cancellation
 - Large HC beam variations can be reduced by retuning
 - Measured detector-beam correlations can provide a correction

$$A_{corr} = \sum_{i=1}^{5} \left(\frac{\partial A}{\partial x_i} \right) \Delta x_i$$

(x,x',y,y',E)

Example: Detector Sensitivity to X position variation

Beam Parameter Corrections

- Two ways to determine sensitivity of the detector asymmetries to beam parameter variations
 - Regression: Natural jitter of beam parameters
 - Dithering: Occasional "large" driven variation of each beam parameter
- Corrections based on the two methods are in excellent agreement for this subset of our data where both are available

Run2 measured asymmetry

- About 77% of the run2 data-set
- Asymmetries have no corrections other than beam parameter correction

Some Backgrounds

- Target cell backgrounds
 - Recall that Qⁿ_{weak}~ 1
 Scattering from the aluminum cell walls will contribute a large asymmetry
 - Need dilution and Al asymmetry
- Inelastic scattering from LH2
 - Measure the asymmetry with reduced magnetic field

Two-boson exchange
 Longitudinal e- spin

 γ -Z box contributions lead to ~6% shift in Q^{ρ}_{weak} with error estimates of about 1%

Transverse e- spin

2-γ exchange with transverse electron spin leads to a azimuthal asymmetry variation

Backgrounds: Aluminum

 Largest background correction from aluminum alloy target windows (0.25% X₀): -64 ± 10 ppb

Dilution measured with empty targetAsymmetry measured with thickand cold gas tracking runsdummy target (4%)

Transverse Asymmetry

- Dedicated measurement with fully transverse beam
 - Constrains false asymmetry for A_{en} result

• Transverse result: nucleon structure and 2γ exchange

The data provide an integral test of all allowed virtual excitations of the proton up to $E_{cm} = 1.7 \text{ GeV}$ = $F_{(0)}$ =

Ancillary Measurements

Many additional measurements under analysis:

- PV asymmetry:
 - elastic ²⁷Al
 - N → ∆ (E = 1.16 GeV, 0.877 GeV)
 - Near W = 2.5 GeV (related to γZ box)
 - Pion photoproduction (E = 3.3 GeV)

- PC Transverse asymmetry:
 - elastic ep
 - elastic ²⁷Al, Carbon
 - $N \rightarrow \Delta$
 - Møller
 - Near W = 2.5 GeV
 - Pion photoproduction (E = 3.3 GeV)

Published 10/2/2013: PRL **111,**141803 (2013)

First Results: Asymmetry

• Run 0 Results (1/25th of total dataset) Kinematics: $\langle Q^2 \rangle = 0.0250 \pm 0.0006 \text{ GeV}^2$ $\langle E_{beam} \rangle = 1.155 \pm 0.003 \text{ GeV}$

Extracting the Weak Charge

Global fit in Q^2 and θ to the reduced asymmetry

$$A_{LR}/A_0 = Q_{weak}^{p} + Q^2 B(Q^2) \qquad A_0 = -(G_{\mu}/4\pi\alpha\sqrt{2})Q^2$$

- Using 5 free parameters: C_{1u} , C_{1d} , ρ_s , μ_s , & the isovector part of G_A^{Z} - G_E^{S} , G_M^{S} , and G_A^{Z} use a dipole, $(1+Q^2/\lambda^2)^{-2}$, with $\lambda = 1$ GeV/c
- Employs all PVES data up to $Q^2 = 0.63 (GeV/c)^2$
 - On p, d, & ⁴He targets, forward and back-angle data
 SAMPLE, HAPPEX, G0, PVA4
- Uses constraints on isoscalar part of G_{A}^{Z}
 - Zhu, et al., PRD 62, 033008 (2000)
- All ep data corrected for E & Q^2 dependence of γZ -box

Electroweak Corrections

 $Q_W^p = \left[1 + \Delta \rho + \Delta_e\right] \left[\left(1 - 4\sin^2\theta_W(0)\right) + \Delta_{e'} \right] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$

1.2

1.0

0.8

0.6

0.4

 $\mathsf{Rel}_{\gamma Z}(E)$ (x 10^{-2})

PRL **107**, 081801 (2011)

Qweak E

Α

V+A

MS

- Most of these well known and precisely calculated except for γ Z-box
- γZ-box: significant energy-dependent correction first identified by Gorchtein & Horowitz
- Hall *et al* model dependence constrained by JLab PVDIS data

First Results: Quark Couplings

Data

Published 10/2/2013: PRL **111,**141803 (2013)

P.M. King; Qweak; APFB2014

10

1

Q (GeV)

100

1000

10000

4% of Qweak Data

P.M. King; Qweak; APFB2014

0.001

0.0001

0.01

0.1

"Teaser"

"Teaser"

e-p transverse asymmetry

- Pasquini/Vanderhaeghen Model
 - Includes intermediate states: proton (elastic) and πN (inelastic)
 - Computed via $N \rightarrow \pi N$ electroproduction amplitudes from MAID
- Afanasev/Merenkov and Gorchtein Models
 - Optical theorem: relates forward Compton amplitude to total photoproduction cross section
 - Effectively includes both πN and $\pi \pi N$ states
- For all models, inelastic dominates over elastic
- Kinematics:
 - $Q2 = 0.0250 \pm 0.006 (GeV/c)2$
 - $E = 1.155 \pm 0.003 \text{ GeV}$
 - Scattering angle = $7.9^\circ \pm 0.3^\circ$
- Preliminary

$$A_n = -5.30 \pm 0.07 \pm 0.15 \text{ ppm}$$

- No radiative corrections
- Results from B. Waidyawansa Ph.D.thesis; being prepared for publication

P.M. King; Qweak; APFB2014

Transverse asymmetry on nuclei

- Calculations with inelastic intermediate hadronic states agree with experimental data up to A = 12, but fail to describe Pb (A = 208)
- No calculation includes both Coulomb distortion and a full range of excited intermediate states.
- Adding data between A=12 and A=208 (such as Al, A=27) will shed light on this issue

P.M. King; Qweak; APFB2014

Summary

• First published result from the Qweak experiment

$$A_{ep} = -279 \pm 35 \; (\text{stat}) \; \pm 31 \; (\text{syst}) \; \text{ppb}$$

Determination of the proton and neutron weak charge

 $Q_W^p(PVES) = 0.064 \pm 0.012$ $Q_W^p(SM) = 0.0710 \pm 0.0007$ $\begin{aligned} Q_W^n(PVES + APV) &= -0.975 \pm 0.010 \\ Q_W^n(SM) &= -0.9890 \pm 0.0007 \end{aligned}$

In agreement with Standard Model predictions

- Final result expected ~year from now
 - Statistical error 5 times smaller, reduced systematics, no show stoppers found
 - Additionally, many ancillary results under analysis

The Qweak Collaboration

97 collaborators23 grad students10 post docs23 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸University of Manitoba,
- ⁹ University of Virginia
- ¹⁰ TRIUMF
- ¹¹Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵
F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5,2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,²
J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,² T. Forest,^{15, 16} D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷
M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,² A.R. Lee,¹³ J.H. Lee,^{6, 2} L. Lee,¹⁰
S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,^{13,} J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A.
Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵
J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵
P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8}
B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

Spokespersons Project Manager Grad Students