Measurement of the proton spin structure functions at very low Q^2 region

Kang,Hyekoo for EG4 collaboration in Hall B, Jefferson Lab

Seoul National University

APFB 2014, Hahndorf, Australia 2014.4.8

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Outline

Motivation.

- Structure Functions and Sum Rules
- GDH sum rule
- Previous Measurements
- 2 About EG4 experiments
 - Experimental Objectives
 - Experimental Equipments
- 3 Spin-dependent cross section and g_1 function(w/ Deuteron results)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

4 The first moment of g_1

5 Summary

Deep Inelastic Scattering

$$W_X^2 = (p+q)^2 = M^2 + 2M\nu - Q^2$$

Beyond the elastic scattering,

- Internal structure of the nucleon is excited coherently, (e.g. $\Delta(1232)$). \rightarrow Inelastic scattering.
- As Q² increases, the nucleon reacts more and more incoherently.
 - \rightarrow Deep Inelastic Scattering.
- Q² larger than 1 2 GeV² is referred to as the DIS region.

Motivation. About EG4 experiments Spin-dependent cross section and g_1 function(w/ Deuteron results) The first moment of $g_1 \circ \circ \circ \circ \circ \circ$

Structure Functions and Sum Rules

$$\frac{d^{2}\sigma}{dE'd\Omega} \stackrel{\rightarrow \leftarrow (\leftarrow \leftarrow)}{=} = \frac{4\alpha^{2}E'^{2}}{Q^{4}} \left[\frac{2}{M}F_{1}(\nu,Q^{2})\sin^{2}\frac{\theta}{2} + \frac{1}{\nu}F_{2}(\nu,Q^{2})\cos^{2}\frac{\theta}{2} \right] \\ \pm \frac{2\alpha^{2}}{Q^{2}}\frac{E'}{ME\nu} \left[(E + E'\cos\theta) \mathbf{g}_{1}(\nu,\mathbf{Q}^{2}) - \frac{Q^{2}}{M\nu} \mathbf{g}_{2}(\nu,\mathbf{Q}^{2}) \right]$$

Cross section in terms of Structure Functions:

- F₁ and F₂ are spin-independent structure functions.
- g₁ and g₂ are spin-dependent structure functions and obtained via difference of helicity-dependent cross sections.

Sum Rule:

- It relates a sum over microscopic properties to a quantity characterizing the target.
- Fundamental theories like QCD can be tested.
- Gerasimov-Drell-Hearn sum rule is one of the examples.

Motivation. About EG4 experiments Spin-dependent cross section and g_1 function(w/ Deuteron results) The first moment of $g_1 \circ \circ \circ \circ \circ$

Gerasimov-Drell-Hearn Sum Rule

Gerasimov-Drell-Hearn Sum Rule

 Relation between photo-absorption cross sections and magnetic moment:

$$\int_{thr}^{\infty} (\sigma_{3/2} - \sigma_{1/2}) \frac{d\nu}{\nu} = 2\pi^2 \alpha \frac{\kappa^2}{M^2}$$

where κ is nuclear magnetic moment, M nucleon mass.

GDH integral:

- The extended sum rule for Q² >0 becomes the integration of spin structure function over Bjorken x: $I_{GDH}(Q^2) = \frac{16\pi^2 \alpha}{Q^2} \int_0^{x_{th}} g_1(x, Q^2) dx = \frac{16\pi^2 \alpha}{Q^2} \Gamma_1(Q^2)$
- The first moment of g₁,

$$\Gamma_1(Q^2) = \int_0^{x_{th}} g_1(x, Q^2) dx.$$

Importance of GDH sum rule

- Chiral Perturbation Theory(χ PT) allows us to understand the Q² dependence below 0.2 GeV².
- Perturbative QCD(pQCD) does for Q² greater than 1.
- EG4 can test the χ PT calculations for very low Q² region.

Hadon Chiral perturbation pQCD Q2 Lattice QCD

Previous Measurements

- CERN, SLAC and DESY measured at high Q².
- JLab also did at intermediate regions.(EG1)
- EG4 at JLab measured the Q² region below 0.5.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

э

Experimental Objectives

Using $ep \rightarrow eX$ reactions,

- Measuring cross sections for the two different electron beam helicities(+/-),
- acquire the g₁ and Γ₁ of the proton at low momentum transfer(Q²).
- The range is tentatively 0.01 0.2 GeV²

- EG4 focused on the very low Q^2 region.
- Its new results can test the theoretical predictions at the low energies.

Experimental Equipments

- Data were taken from February to May 2006
- Polarization: 85% for electrons, 80% for protons and 37% for deuterons
- Beam energies(GeV): 1.0, 1.3, 2.0, 2.3, 3.0 (proton) 1.3 and 2.0 (deuteron)

Experimental Equipments

- Data were taken from February to May 2006
- Polarization: 85% for electrons, 80% for protons and 37% for deuterons
- Beam energies(GeV): 1.0, 1.3, 2.0, 2.3, 3.0 (proton) 1.3 and 2.0 (deuteron)

Experimental Equipments

- Data were taken from February to May 2006
- Polarization: 85% for electrons, 80% for protons and 37% for deuterons
- Beam energies(GeV): 1.0, 1.3, 2.0, 2.3, 3.0 (proton) 1.3 and 2.0 (deuteron)

Motivation. About EG4 experiments Spin-dependent cross section and g_1 function(w/ Deuteron results). The first moment of $g_1 = 00000$ 00

Cross section difference, $\Delta \sigma_{data}^{p}(W, Q^{2})$.

999

Motivation. About EG4 experiments Spin-dependent cross section and g_1 function(w/ Deuteron results) The first moment of $g_1 = 00000$ 00

Cross section difference, $\Delta \sigma^{p}_{data}(W, Q^{2})$.

SQA

Extraction of $g_1^p(x, Q^2)$ function

Extraction of $g_1^p(x, Q^2)$ function

 $g_1(W, Q^2)$ from deuteron data (Courtesy of Krishna Adhikari)

SQ P

The first moment of g_1^p : Γ_1

- Integrated from π -threshold to the smallest x accessbile at our kinematics.
- Preliminary comparison to the previous measurement(Green dots).

Γ_1 from deuteron data (Courtesy of Krishna Adhikari)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Summary

- Integral of g₁ is very useful observable to study the transitional behaviour of strong interaction between its perturbative and non-perturbative regimes.
- The EG4 experiment was performed at J-Lab. It measured g_1 at very low Q^2 .
- Preliminary results are available now for both proton and deuteron.
- Integration of g₁ is compared to some theoretical predictions.
- (Proton) The integration uses the g_1 from data only. Small x region is not included.
- (Proton) Inclusion of g_1 at small x can change the $\Gamma_1^p(Q^2)$.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Sum Rules

Gottfried sum rule:

$$\int_{0}^{1} \frac{dx}{x} \left(F_{2p}\left(x, Q^{2}\right) - F_{2n}\left(x, Q^{2}\right) \right) = \frac{1}{3}$$

• New Muon Collaboration at CERN provided the evidence of a violations. Measured value is about 0.23.

Bjorken sum rule:

$$\int_{0}^{1} \left[g_{1}^{p}\left(x\right) - g_{1}^{n}\left(x\right) \right] dx = \frac{g_{A}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi}\right)^{2} - 20.22 \left(\frac{\alpha_{s}}{\pi}\right)^{3} \cdots \right] g_{A}$$
: isovector, axial charge of nucleon, measured via β -decay.

• This sum rule had been confirmed at the level of 10%.

Ellis-Jaffe sum rule:

- $\Delta u \Delta d = g_A$ measured via neutron β -decay, $\Delta u + \Delta d = \Delta q_8$ via hyperon β -decay.
- Expectation is about 0.167 and EMC measured 0.114.

GDH sum rule beyond $Q^2 = 0$

Generalization of GDH sum rule

- GDH sum rule has its origin at the Compton amplitude and it is calculable by chiral perturbation theory when Q² is small compared with the nucleon mass.
- $\bullet\,$ When Q^2 gets greater than zero, elastic contribution comes in.
- But GDH sum rule has no elastic contributions, so this should be subtracted.

Theoretical methods

- Chiral perturbation theory allows to understand the Q² dependence from 0 to 0.2 GeV².
- Perturbative QCD does for the Q^2 greater than 0.5.
- There is no firm theoretical tool between 0.2 and 0.5.

Kinematic Coverage

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

CEBAF Large Acceptance Spectrometer(CLAS)

- CLAS covers nearly 4π of solid angle.
- Cherenkov Counter at sector 6 is newly installed only for EG4(Left).

ertical drive shaft Brass heat sink

Horizontal alignment pins

Cherenkov Counter for EG4

- CC for CLAS has low efficiency for electron detection at forward angle
- It leads to require more corrections when one measures the absolute cross section.
- Improving the detection efficiency at forward angle is done at the new CC for EG4.

Particle Selection Cuts:

At first, Selection of good events:

- At least one particle recorded and the first one has negative charge.
- Successfully reconstructed, hitting all 4 detectors, DC, CC, SC, EC.
- recorded momentum is greater than minimum(0.3GeV) and hitting sector 6.

) < (~

Particle Selection Cuts:

At first, Selection of good events:

- At least one particle recorded and the first one has negative charge.
- Successfully reconstructed, hitting all 4 detectors, DC, CC, SC, EC.
- recorded momentum is greater than minimum(0.3GeV) and hitting sector 6.

Details on Radiative Correction.

- Based on the formalism by T.V. Kuchto and N.M. Shumeiko.(Nucl. Phys. B219(1983), p412)
- External correction is Based on Mo and Tsai's approach.
- Updated with the most recent models.

Details on Radiative Correction.

- Based on the formalism by T.V. Kuchto and N.M. Shumeiko.(Nucl. Phys. B219(1983), p412)
- External correction is Based on Mo and Tsai's approach.
- Updated with the most recent models.

