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Roper Resonance

• Quark model: N = 2 radial excitation of the nucleon.
• Much lower in mass than simple quark model predictions.

• Experiment: Lighter than N = 1 radial excitation of the
nucleon, the negative parity S11(1535).

• “Exotic” in nature.
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Roper Resonance

• It has proven difficult to isolate this state on the lattice.
• Consider the nucleon interpolators,

χ1(x) = εabc(uTa(x) Cγ5 db(x)) uc(x) ,

χ2(x) = εabc(uTa(x) C db(x)) γ5 uc(x) ,

χ4(x) = εabc(uTa(x) Cγ5γ4 db(x)) uc(x).

• Historically thought Roper couples to χ2.

• We will see that this is wrong!
• Key to isolating this elusive state is an appropriate

variational basis.
• Phys.Lett. B707 (2012) 389-393, “Roper Resonance in 2+1

Flavor QCD”
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Correlation Functions

• Start with the two point correlation function:

G(t , ~p) =
∑
~x

e−i~p.~x〈Ω|T{χ(x)χ̄(0)}|Ω〉.

• Insert completeness, project parity ± and ~p = 0 to obtain a
tower of (excited) states

G±(t , ~0) =
∑
α

λαλ̄αe−Mαt .

• Asymptotically, Euclidean time evolution isolates the
ground state

G±(t , ~0)
t→∞

= λ0λ̄0e−M0t .
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Variational Method

• How can we access the excited states?

• Construct an n × n correlation matrix,

Gij(t , ~p) =
∑
~x

e−i~p.~x〈Ω|T{χi(x)χ̄j(0)}|Ω〉.

• Solve a generalised eigenproblem to find the linear
combination of interpolating fields,

φ̄α =
N∑

i=1

uαi χ̄i , φα =
N∑

i=1

vαi χi

such that the correlation matrix is diagonalised,

vαi Gij(t)u
β
j = δαβzαz̄βe−mαt .
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Eigenstate-Projected Correlators

• The left and right vectors are used to define the
eigenstate-projected correlators

vαi G±ij (t)uαj ≡ Gα
±(t).

• Effective masses of different states are then analysed from
the eigenstate-projected correlators in the usual way.

• Not able to access the Roper using χ1, χ2 ( or χ4 ) alone.
• Solution: Use different levels of gauge-invariant quark

smearing to expand the operator basis.
• Analogy: Can expand any radial function using a basis of

Gaussians of different widths

f (|~r |) =
∑

i

cie−εi r2
.
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Simulation Details

• PACS-CS Configs (via ILDG)
• S. Aoki, et al., Phys. Rev. D79 (2009) 034503.
• 2 + 1 flavour dynamical-fermion QCD
• Lattice volume: 323 × 64
• a = 0.0907 fm, ∼ (2.9 fm)3

• mπ = { 156, 293, 413, 572, 702 } MeV

• Combined 8× 8 correlation matrix analysis using χ1, χ2
and χ1, χ4 with 4 different levels (n = 16,35,100,200) of
smearing.

• Corresponds to RMS radii of 2.37, 3.50, 5.92 and 8.55
lattice units.



N+ spectrum



Eigenvector analysis – State 1 (Ground)
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Eigenvector analysis – State 2 (First Excited)
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Eigenvector analysis – First Excited State

• Dominant contribution is from χ1,n = 200.
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Eigenvector analysis – First Excited State

• Opposite contribution from a mix of χ1,n = 100 and
χ1,n = 35.
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Eigenvector analysis – First Excited State

• Negligible contribution from χ1,n = 16 and all χ2
operators.

−1.0

−0.5

0.0

0.5

1.0

E
ig

en
ve

ct
or

C
om

po
ne

nt

n = 16 n = 35 n = 100 n = 200

χ1

χ2









Eigenvector analysis – State 4
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Eigenvector analysis

• First positive-parity excited state couples strongly to χ1.

• Large smearing values are critical.
• χ2 coupling to the Roper is negligible.
• Transition from scattering state to resonance as quark

mass drops.
• The 3-quark coupling to meson-baryon scattering states is

suppressed by the lattice volume ∼ 1/
√

V .

• At light quark mass the Roper mass is pushed up due to
finite volume effects?

• How can we learn more?
• Study multiple lattice volumes.

• Expensive.
• Look at the excited state structure via the wave function.
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Hydrogen S states



Wave function of the Roper

• We explore the structure of the nucleon excitations by
examining the Bethe-Salpeter amplitude.

• The baryon wave function is built by giving each quark field
in the annihilation operator a spatial dependence,

χ1(~x , ~y , ~z, ~w) = εabc ( uT
a (~x + ~y) Cγ5 db(~x + ~z) ) uc(~x + ~w).

• The creation operator remains local.
• The resulting construction is gauge-dependent.

• We choose to fix to Landau gauge.



Wave function of the Roper

• Non-local sink operator cannot be smeared.
• Construct states using right eigenvector uα only.
• Eigenvectors from 4× 4 CM analysis using χ1 only.

• The position of the u quarks is fixed and we measure the d
quark probability distribution.



Ground state probability distribution
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First excited state probability distribution
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Quark Model comparison

• Compare to a non-relativistic constituent quark model.
• One-gluon-exchange motivated Coulomb + ramp potential.
• Spin dependence in R. K. Bhaduri, L. E. Cohler and Y.

Nogami, Phys. Rev. Lett. 44 (1980) 1369.
• The radial Schrodinger equation is solved with boundary

conditions relevant to the lattice data.
• The derivative of the wave function is set to vanish at a

distance Lx/2.
• Two parameter fit to the nucleon radial wave function

yields:
• String tension

√
σ = 400 MeV

• Constituent quark mass mq = 360 MeV

• These parameters are held fixed for the excited states.



Ground state comparison
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Quark Model comparison

• Ground state QM agrees well (as expected).

• First excited state shows a node structure.

• Consistent with N = 2 radial excitation.
• QM predicts node position fairly well.
• QM disagrees near the boundary.
• Reveals why an overlap of two broad Gaussians with

opposite sign is needed to form the Roper.

• Second excited state shows a double node structure.

• Consistent with N = 3 radial excitation.
• Similar story for QM comparison.

• Finite volume effects?
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Quark Model comparison

• Wave function should be spherically symmetric.

• Outer shell of Roper wave function clearly reveals
distortion due to finite volume.

• Effective field theory arguments suggest the small volume
will drive up the energy.



5-quark operators

• What if the Roper has a large 5-quark component?
• Dynamical gauge fields – can create qq̄ from glue.
• Maybe we can do a better job by introducing 5-quark

operators?
• Take χ1 and χ2 operators and couple a π to get N+

1
2

quantum numbers:

χ1 + π → χ5

χ2 + π → χ′5

• Preliminary results at mπ = 293 MeV with two smearings
n = 35,200.



N+ spectrum with 5 quark operators

1 2 3 4 5 6 7
Correlation Matrix Number

1

2

3

4

5

M
(G

eV
)

1 => χ1 + χ2
2 => χ1 + χ2 + χ5
3 => χ1 + χ2 + χ′5
4 => χ1 + χ2 + χ5 + χ′5
5 => χ1 + χ5 + χ′5
6 => χ2 + χ5 + χ′5
7 => χ5 + χ′5

ns = 35 + 200

S-wave N + π + π

P-wave N + π



N+ spectrum with 5 quark operators



1 2 3 4 5 6 7
Correlation Matrix Number

−1.0

−0.5

0.0

0.5

1.0
E

-v
ec

to
r

co
m

po
ne

nt

State 1
ns = 35 + 200

uχ1

35

uχ1

200

uχ2

35

uχ2

200

uχ5

35

uχ5

200

u
χ5′
35

u
χ5′
200



1 2 3 4 5 6 7
Correlation Matrix Number

−1.0

−0.5

0.0

0.5

1.0
E

-v
ec

to
r

co
m

po
ne

nt

State 2
ns = 35 + 200

uχ1

35

uχ1

200

uχ2

35

uχ2

200

uχ5

35

uχ5

200

u
χ5′
35

u
χ5′
200



Summary

• A basis of multiple Gaussian smearings is well-suited to
isolating radial excitations of the nucleon.

• The variational method allows us to access a state that is
consistent with the N = 2 Roper excitation with standard
three-quark interpolators.

• Probing the Roper wave function reveals a nodal structure.
• χ2 has negligible coupling to the Roper.
• Multiple χ1 operators at large smearings are critical to form

the correct structure.



Summary

• Qualitative agreement with QM predictions for the Roper
radial wave function.

• Finite volume effects clearly evident in the Roper
probability distribution.

• Larger lattice volumes needed!

• Preliminary results do not indicate a strong coupling to
5-quark operators.
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